Please use this identifier to cite or link to this item:
Title: The Impact on Learning of Generating vs. Selecting Descriptions in Analyzing Algebra Example Solutions
Authors: Corbett, Albert
Wagner, Angela
Lesgold, Sharon
Ulrich, Harry
Stevens, Scott
Issue Date: Jun-2006
Publisher: International Society of the Learning Sciences
Citation: Corbett, A., Wagner, A., Lesgold, S., Ulrich, H., & Stevens, S. (2006). The Impact on Learning of Generating vs. Selecting Descriptions in Analyzing Algebra Example Solutions. In Barab, S. A., Hay, K. E., & Hickey, D. T. (Eds.), The International Conference of the Learning Sciences: Indiana University 2006. Proceedings of ICLS 2006, Volume 1 (pp. 99-105). Bloomington, Indiana, USA: International Society of the Learning Sciences.
Abstract: Self-explanation of worked examples is an effective strategy for student learning. This paper examines the impact on learning of self-generating explanations of worked examples vs. selecting them from a menu in an intelligent tutoring system. In this study, students describe the structure of algebraic models of real-world problem situations. In one tutor version students select their descriptions from menus and in a second version students type their explanations in their own words. In a third version menu-selection and self-generation are interleaved. In this condition the canonical menu entries may serve to scaffold self-generated descriptions. Students completed the problems fastest with the menu version and the students learned to both explain and generate the target algebraic models equally well in all versions. However, the type-in version led to more successful transfer to describing novel algebraic models of problem situations. The scaffolded version was the least successful of the three.
Appears in Collections:ICLS 2006

Files in This Item:
File SizeFormat 
99-105.pdf236.35 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.