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Abstract: Researchers have used joint visual attention (JVA) as a proxy for collaborative 
quality and/or performance during the last decade due to its association with both measures. 
However, the notion of looking at the same object does not necessarily indicate that students 
are solving the problem together (or learning together). We propose a complementary approach 
to joint visual attention by augmenting it with joint mental effort (JME). JME is computed as a 
cross-recurrence of the cognitive load of the peers in a dyad. We use data from 41 dyads to 
show the synergy between JVA and JME and the insights that they can shed in the collaborative 
process. The results show that in certain episodes of collaboration (characterized by the dialogue 
and division of labor strategy of the dyad) combining these two dual-eye tracking measures 
provide deeper insights about the collaborative processes and performance than JVA alone.  
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Introduction 
It is not a new idea that collaborative learning can be beneficial for student learning outcomes nor within the 
computer-supported collaborative learning (CSCL) community that technology can be used to support the 
collaborative process (Johnson & Johnson, 1987; Lou, Abrami, & d’Apollonia, 2001). However, it continues to 
be an on-going process to understand what a productive collaboration process entails. As technology and 
computational methods continue to develop, our ability to measure the collaborative learning process changes by 
measuring it through different modalities and over time (Olsen, Sharma, Rummel, & Aleven, 2020; Starr, Reilly, 
& Schneider, 2018). A common motivator for finding new means of assessing the quality of the collaboration 
process has been the difficulty and time-consuming process of analysing student dialogue, especially in real time 
to be able to put interventions in place (Sharma et al., 2017). In these cases, the new measures are often a proxy 
for the dialogue content. When we consider collaboration measures in this way, we either intentionally or 
unintentionally assign moments of silence as less valuable. Rather, new measures of collaboration that can 
complement existing measures can fill in these gaps. In this paper, we aim to deepen our understanding of what 
effective collaboration looks like through the assessment of dual eye tracking measures. Furthermore, by assessing 
these eye tracking measures, we contribute to the understanding of how eye tracking can be used to analyse the 
collaborative learning process.   

One collaborative learning theory is that students are able to assess and update their mental models of 
the domain by working with peers (Chi & Wylie, 2014). Through the process of co-construction, students can 
reflect on their own mental model to make repairs, incorporate their partner’s ideas into their model, and construct 
new knowledge by building upon their partner’s ideas (Hausmann, Chi, & Roy, 2004). In this case, the benefits 
of collaboration come from the joint construction of knowledge that occurs as students work together. To measure 
these processes, we can analyse episodes of interaction for indicators of students integrating their partner’s ideas 
into their thought process. For example, one can measure collaboration through the use of transactivity (Joshi & 
Rosé, 2007) or through interactive dialogue as proposed in the ICAP framework (Chi & Wylie, 2014). Many of 
these coding schemes focus on the different ways in which students can construct knowledge. In a collaborative 
setting, this is just one aspect of the collaboration with students also needing to coordinate the work and in CSCL 
settings, coordinate with the technology (Rummel et al., 2011). Across all of these aspects, researchers have 
mainly used dialogue content as the gold star measure for collaboration but interactions with the activity are also 
common. When other collaborative learning measures are proposed, too often they are used as a proxy for 
analysing the dialogue content rather than complementing it (Sharma et al., 2017). The work in multi-modal 
learning analytics begins to address this gap by investigating how multiple modalities of data can be used together. 
However, before combining data streams, it is important to understand what each data stream can provide. 

In this paper, we focus on the information that can be provided through dual eye tracking (DUET). In 
previous research, DUET has been used as a tool to explain the socio-cognitive mechanisms underlying 
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 collaborative learning (Jermann and Nuessli, 2012; Sharma et al, 2018 & 2020; Olsen et al, 2018). Information 
extracted from DUET data has been used to explain collaboration quality (Schneider et al, 2019), collaborative 
task-performance (Sangin et al., 2011; Jermann and Nuessli, 2012; Sharma et al, 2017), and collaborative learning 
gains (Olsen et al., 2020). Duet also has been used to explain certain processes related to collaborative learning, 
for example, mutual modelling (Lemaignan and Dillenbourg, 2015), repairs of misunderstanding (Cherubini et 
al., 2008), shared understanding (Richardson et al., 2007), and coordination (Brennan, et al., 2008).  Additionally, 
researchers have used DUET as a method to provide collaborative awareness to the peers attempting to solve a 
given problem (Schneider and Pea, 2015, D’Angelo and Begel, 2017; D’Angelo and Gergle, 2016). In most of 
these studies, the basic outcome or the working hypothesis is that Joint Visual Attention (JVA) is a decent proxy 
of collaborative mechanisms. All of these studies emphasize a social extension of the eye-mind hypothesis, “what 
you see is what you process”, to “looking together is processing together”. However, this notion has not been 
verified in some studies over the past few years (e.g., Belenky et al, 2014). In this contribution, we revisit the 
concept of JVA and complement it with another DUET measurement, Joint Mental Effort (JME). This 
measurement is inspired by the Kirscher’s view (Kirschner et al., 2018) of how transactive activities can exert 
cognitive loads on collaborating peers and that the absence of synchrony in the collaboration can be detrimental 
for collaborative performance (Popov et al., 2017). JME provides an attempt to create a proxy for the collaborative 
cognitive load synchrony. 

Specifically, in this paper, we investigate what JVA and JME, both collected through eye tracking, 
indicate about the collaborative learning process. We analysed 82 master students working in pairs to construct a 
concept map related to the resting membrane potential. We were interested in how their collaborative process 
impacted the quality of their concept map. To measure the collaborative process, we collected student dialogues, 
eye tracking data and computer logs. In this paper, we aimed to answer two research questions through our 
analysis. First, how did our eye tracking measures (JVA and JME) relate to student performance? Second, how 
do JVA and JME relate to other indicators of collaboration, such as dialogue content and division of labor, and 
how do the interactions with student performance associate with JVA and JME? Based on previous studies, we 
hypothesize that JVA will be positively related to student performance (Richardson et al., 2007; Jermann and 
Nuessli, 2012) and that JME also will be positively associated with performance (Kirschner et al, 2018; Popov et 
al, 2017). Based on the results of these research questions, we discuss the benefits of using eye tracking measures 
to assess the collaborative learning process. 

Methodology 

Participants and procedure 
We had 82 master students from École Polytechnique Fédérale de Lausanne participating in the present study in 
pairs. Of these students, 16 were female. Before beginning to create the concept map collaboratively, all 
participants individually watched two videos about “resting membrane potential”, a topic about which the students 
did not know prior to participating in the task. Each video was 17.05 minutes long and provided the students with 
the information they would need for the development of the concept maps. While watching the videos, the 
participants had full control over the video player and no time constraints. After both partners completed the 
videos, they were asked to create a collaborative concept-map using IHMC CMap tools (Figure 1, top). The 
collaborative concept-map phase was 10-12 minutes long. Although each student remained working at their own 
computer, the participants could talk to each other while their screens were synchronized, i.e., the participants in 
the pair were able to see their partners’ actions. There were 14 concepts preloaded on the Concept map tool and 
the main task for the pairs was to connect the given concepts with correct relationships. They could also add new 
concepts if they wanted. 

Data collection  
From the interaction of the dyad with the concept map tool, we collected the following data. 1) We collected eye-
tracking data using two SMI remote eye-tracking devices (SMI RED 250) at the sampling rate of 250 Hz. For 
each participant, we use a 5-point calibration and a 5-point validation mechanism. The fixation and saccades were 
identified using the built-in algorithm of the BeGaze software. 2)We recorded the audio of the students’ dialogues 
using the system audio from one of the computers. 3) We recorded all the actions done by the dyad on the concept 
map. The logs contained the timestamp of the action, peer ID, action type (add, delete, move, resize, text edit), 
conceptID and metadata (Figure 1, bottom). For example, if a student adds two concepts with a link. The system 
would log the time the action took place, the ID of the students, the action is logged as an “add” action, the object 
will be the “connection”, there will be a new ID generated for this connection, and the metadata would log the 
two concepts it linked. 
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Figure 1. (Top) An example of the concept map under construction in the CMap tools. The two participants’ 
names are on the top-right side, and their pointers have different colors. Whenever they perform an action, the 

relevant object (concept or link) is highlighted. (Bottom) Snapshot of the log file produced from CMap. 

Measurements 
All the measurements were computed at the dyad level, the time-unit for each computation was one utterance, 
and all the measurements were aggregated for the dyad. 

Cognitive load similarity (CLS): Joint mental effort (JME) 
From the eye tracking data, we calculated the students’ JME, a measure of the cognitive load similarity. To 
calculate this measure, we first compute the individual cognitive load from the pupil dilation data using the method 
found in Duchowski et al. (2018).  Next, we discretize the value to represent an integer value in the range zero to 
ten. Once we have the cognitive load for both peers in the dyad, we compute the cross-recurrence between the 
two time-series, using the method proposed by (Richardson et al., 2007).  

Gaze similarity (GS): Joint visual attention (JVA) 
JVA is a measure of how similar two individual gaze patterns are. In order to compute the similarity between the 
gaze patterns of two collaborating students, we computed the similarity between the two proportionality vectors 
discussed above by using the reverse function (1/(1+x)) of the correlation matrix of the two vectors (where x is 
the distance between the two proportionality vectors). A similarity value of 1 shows complete similarity between 
the two gaze patterns during a given time window. A lower value of similarity shows that the two participants 
spent less time looking at a similar set of objects on the screen during the same time window. 

Dialogue codes 
One of the authors transcribed the audio data and two authors coded the dialogues. The intercoder-consistency 
between the two coders was 0.86 (for 20% dyads). The dialogues were coded based on the fact whether the dyad 
is talking about the concept map tool and aesthetics (CMAP) or about the content of the concept map (KNWL). 
For example, "Let’s write something to remove the question marks" would be coded as CMAP, and "Resting 

membrane potential is the equilibrium between Na+ and Cl-” would be coded as KNWL. 

Division of labor (DoL) 
Following a definition provided by Jermann (2004), we compute the division of labor using the number actions 
taken on a specific concept by one member of the dyad. Specifically, we compute the Sum of Differences (SD) 
and Sum of absolute differences (SAD) between members of a dyad using the formulae (1) and (2). Using 
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 thresholds on SD and SAD, we define three DoL levels, role, task and concurrent, which we outline in more detail 
below. 𝑆𝑆𝑆𝑆 =  

∑ (𝑆𝑆1𝐶𝐶𝑖𝑖−𝑆𝑆2𝐶𝐶𝑖𝑖𝑖𝑖 )𝑆𝑆1𝐶𝐶+𝑆𝑆2𝐶𝐶  (1)  𝑆𝑆𝑆𝑆𝑆𝑆 =  
∑ |𝑆𝑆1𝐶𝐶𝑖𝑖−𝑆𝑆2𝐶𝐶𝑖𝑖|𝑖𝑖 𝑆𝑆1𝐶𝐶+𝑆𝑆2𝐶𝐶   (2) 

 
In formulae (1) and (2), S1 and S2 are the peers in a dyad. C is the concept.  S1C and S2C are the total 

number of actions done by peers S1 and S2, respectively. S1Ci and S2Ci are the actions done on concept Ci by 
S1 and S2, respectively. SD has a range of [-1, +1] with -1 indicating that S2 did all the actions, +1 indicating that 
S1 did all the actions and 0 depicting equal participation. SAD has a range of [0, 1] with 0 indicating equal 
participation and 1 indicating that all the actions were done by one peer.  

We defined the DoL strategies – role, task and concurrent – based on SD and SAD values. The DoL 
strategy is classified as role if SAD is in the range [0.5, 1] and SD in either [0.33, 1] or [-1, -0.33] indicating that 
one student did all of the actions within a certain time window - implying the other student was either a free-rider 
or acting as a navigator. The DoL strategy is classified as concurrent if SAD is in the range [0, 0.5] and SD in 
range [-0.33, 0.33] during the time window, indicating that the students had equal participation on the same 
concepts. Finally, the DoL strategy is classified as task if SAD is in the range [0.5, 1] and SD in either [-0.33, 
0.33] during the time window indicating that the students were each participating in taking actions on the concept 
map, but on different concepts.  

Learning performance: Correctness of the concept map 
The learning performance for this activity is the correctness of the concept map. We asked two domain experts to 
create a map using the same 14 concepts. All the participant maps were compared against this expert map. We 
followed the following map-evaluation scheme: 1) 2 points for correct link and correct label; 2) 1 point for correct 
link and no label; and 3) 0.5 point for correct link and incorrect correct label. We added the points for each link 
between all the concepts and that was the dyad’s performance score. Finally, we applied a median split to divide 
the dyads into high and low performance groups.  

Data analysis 
To examine the direct relationship between eye tracking measures and performance, dialogue codes, and DoL, 
we used a set of ANOVAs. We tested for the normality and homoscedasticity conditions using Shapiro-Wilk and 
Bausch-Pegan tests, respectively. In the case where the normality was violated, we normalized the data, and in 
cases where the homoscedasticity was violated, we used a Welch correction. We also tested for the pairwise 
interaction for all the variables using ANOVA. For the post hoc pairwise tests we applied Bonferroni corrections. 
We also computed the Cohen's d as the effect size for each ANOVA calculation. According to Cohen effect sizes 
can be low (below 0.2) medium (0.2 - 0.8) and high (above 0.8).  

Results 

JVA and JME relation with performance levels 
To answer our first research question, we analysed the relationship between JVA and JME and the performance 
level of our dyads on their concept map. For both measures, we observed significant associations with 
performance level (see Figure 2, left column). The JVA for high performing dyads is significantly higher than the 
JVA for the low performing dyads (F(1,38) = 18.67, p < .0001, d = 0.65). Similarly, the JME for high performing 
dyads is significantly higher than the JME for the low performing dyads (F(1,35.27) = 23.91, p < .0001, d = 0.81). 

JVA and JME relation with other process variables 
To answer the first part of our second research question, we investigated how JVA and JME relate to the other 
collaborative process measures (i.e., dialogue content and division of labor). We observed significant associations 
between the DoL strategies with both JVA (F(2,37) = 25.21, p < .0001, d = 0.87)  and JME (F(2,32.45) = 8.29, p 
< 0.01, d = 0.24). As seen in the middle column of Figure 2, JVA is highest when the students are engaged in role 
division compared to concurrent (F(1,38) = 16.89, p < .01, d = 0.58) or task (F(1,38) = 27.49, p < .0001, d = 0.92). 
Additionally, JVA is higher for a concurrent division than a task (F(1,38) = 24.35, p < .001, d = 0.84). Similarly, 
JME is highest for a role division compared with concurrent (F(1,35.59) = 17.01, p < .01, d = 0.62) or task 
(F(1,31.35) = 28.33, p < .001, d = 0.95), and task is also lower than concurrent (F(1,33.24) = 22.43, p < .001, d = 
0.78).  

Further, we found a significant relationship between both JVA and JME and the dialogue codes. In the 
right column of Figure 2, we see that JVA is significantly higher during concept-map dialogues than knowledge 
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 dialogues (F(1,38) = 11.17, p < .001, d = 0.38). We found the opposite for JME with JME being significantly 
higher during knowledge dialogues than concept-map dialogues (F(1,36.83) = 31.29, p < .0001, d = 1.03). 

Figure 2. Comparing Joint Mental Effort (top panels) and Joint Visual Attention (bottom panels) across the 
different categories of Performance (left, high/low), division of labor (middle, concurrent/role/task), and 

dialogue codes (right, CMAP/KNWL). 

Interaction effect between process variables and performance on eye-tracking 
Finally, to answer the second part of our second research question, we analysed the impact of the interactions 
between the different process variables and their relation with the performance outcome. Concerning the 
interaction effects on JVA, we found a significant interaction between the performance levels and DoL strategies 
on JVA (F(1,38) = 20.79, p < .0001, d = 0.72). As we can see in Figure 3, the low performing students have a 
relatively stable JVA across the three DoL strategies. On the other hand, the high performing students fluctuated 
to have no significant difference with concurrent, higher JVA for role (F(1,35.56) = 13.11, p < .0001, d = 0.47), 
and lower JVA for task (d = F(1,32.72) = 9.38, p < .0001, d = 0.38) compared to the lower performing students. 
In terms of dialogue, we did not observe any interaction effect of performance and the dialogue category 
(CMAP/KNWL) on the JVA. 

As with the JVA, we found an interaction between performance levels and DOL strategies for JME 
(F(1,38) = 9.56, p < .001, d = 0.29). There is not a significant difference between high and low performing dyads 
during concurrent and task divisions, but the difference is significant between high and low performing students 
during role divisions (F(1,22.23) = 11.23, p < .0001, d = 0.39) as seen in Figure 3. We did not observe a significant 
interaction between performance levels and the dialogue codes (CMAP/KNWL) on JME.  

Discussion and conclusion 
In this paper, we aimed to explore alternate measures of the collaboration processes, namely, ones gathered 
through dual eye tracking. As with other multi-modal studies, we are interested in the additive property that 
analysing the collaborative process from multiple perspectives can provide. With that in mind, in this discussion, 
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 we will present different interpretations of the data and how these interpretations are narrowed down as we add 
new measures, indicating the additive property of the measures rather than providing a set of proxies. 
 

 
Figure 3. Interaction effect of performance levels and division of labor strategies on joint visual attention (left) 

and joint mental effort (right).  
  

In terms of our first research question, how did the eye tracking measures relate to student performance, 
we confirmed our hypothesis that both higher JVA and JME were positively related with higher performance. 
This finding provides more of a confirmation of previous findings (Sangin et al., 2011; Jermann and Nuessli, 
2012) than necessarily providing a new insight on its own. However, we would like to highlight that although 
researchers have studied the impact of individual cognitive load extensively (Amadieu et al, 2009, Kalyuga, 2011), 
using a joint measure to assess the collaborative process is relatively new. What this means is that students that 
are putting in the same amount of mental effort at the same time are more likely to perform well, and it is not just 
about the amount of mental effort of an individual student. The positive relation between JME and performance 
in a task where the transactive actions are taking place (division of labor, communication, and coordination of 
activities, Popov et al., 2017), gives an indication towards JME being a decent proxy for collaborative cognitive 
load. Nonetheless, it is an early indication and further studies are required for generalizability.  

In terms of our second research question, how do JVA and JME relate to other process variables and 
what is the interaction when we include performance, it is interesting to discuss the results in terms of the division 
of labor measure. First, let’s look at the concurrent division. Recall from our description of this measure that the 
concurrent division occurs when each member of the dyad is working on the same concepts in the same time 
window (although not necessarily trying to take the same actions). From our analysis, we found that during 
concurrent division, students had both JVA and JME measures somewhere between those of the role and task 
divisions. This might be expected as the students are looking in the same general area but, as they are doing 
separate actions, this overlap does not mean that they are necessarily working together. However, because the 
JME is also in between, it is unlikely that one student is just doing aesthetic changes while the other is enhancing 
the concept diagram. Although at the surface level, we may want to classify concurrent division as weak 
collaboration, as the students are doing separate actions, the eye tracking measures indicate that this is not always 
the case and warrants further investigation as to what occurred in the collaboration process prior that led to this 
division of labor before determining that an intervention is needed. 
 In contrast, during the role division, one student is doing all of the actions during a time frame. This 
pattern may be due to one partner free-riding (Le et al., 2018) or due to a productive driver/navigator collaboration 
(Bryant et al., 2006). If the students are focused on the same thing (high JVA) and are putting in the same mental 
effort (high JME), it is more likely to be a productive collaboration than a student free-riding. Although we found 
high JVA and JME in general during the role division, this was not the case when we took into account student 
performance. In this case, low performers had significantly lower JVA and JME, indicating that this may be 
instances of free-riding. Unlike with the concurrent collaboration, the use of roles is often considered as a 
productive collaboration script (King, 1999). Nonetheless, roles alone do not guarantee interdependence, and these 
may be moments for a clear intervention. 
 During the task division, students are working on different concepts during the same time window. As a 
first interpretation, this may mean that the students have divided the work evenly and are each working on a 
different part. However, it may also indicate that one student is doing the majority of the work while the other is 
making aesthetic changes – like when one participant writes a paper and the other corrects typos. From the JVA, 
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 we cannot differentiate these actions, as the JVA is low, as expected, due to the students working on different 
parts of the map. The JME can provide more insight though. We might expect the JME to be high if the students 
have an equal division of labor. In our case, we found the JME to be low, most likely indicating that there was 
not an equal divide. Perhaps more surprisingly, the JME was not different for high and low performers, but the 
JVA was. This may indicate that although in both cases the division of labor may not have been even, the high 
performers may have had more confidence carrying out their tasks independently. Future work would be needed 
to assess the exact task division and how these actions fit into the students’ broader collaboration processes. 

Finally, we observe that the JVA and JME have an opposite relationship with the dialogue, i.e., whether 
the dyad is talking about the interface or the domain knowledge. JVA is higher for the interface-based dialogues 
while the JME is higher for the knowledge dialogues. This indicates the complementary nature of two gaze 
measurements. The JVA is higher when there is strong visual support to ground the verbal references and JME is 
higher when the discussion is focused on domain knowledge. If we were to ignore one of these measurements, 
we would have received only half the picture (either in terms of attention management or in terms of effort 
management). Moreover, the high performing dyads have both JVA and JME that are higher than the low 
performing dyads, showing that, in terms of both their attention and effort management, the high performing 
dyads have more of an equal participation than the low performing dyads. This could possibly lead to better task-
performance at the end of the collaborative session. 

Although this paper presents a first analysis of how different types of eye tracking measures can shed 
light on the collaborative process, there are still several limitations. First, we only have an end performance 
measure. It is not clear if the collaborative process patterns we see are due to the knowledge of the students when 
they begin or if these actions led to better learning thereby leading to a better performance. Second, there are 
many combinations of process variables and temporal aspects that we did not explore in this paper that would 
provide further insights into the collaborative process and how it impacts JVA and JME. Due to space, we could 
not include them all. 

In this paper, we aimed to deepen our understanding of what effective collaboration looks like through 
the assessment of dual eye tracking measures. We found that an effective collaboration is not necessarily a one-
size-fits-all where a single metric can be used to judge the quality of the collaboration. Further, we found that 
joint mental effort can provide additional information than joint visual attention alone to better assess the 
collaborative process, contributing to the use of dual eye tracking methodology. 
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