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Abstract: This paper describes a multimodal dataset captured during a collaborative learning 
activity typical of makerspaces. Participants were introduced to computational thinking 
concepts using a block-based environment: they had to program a robot to solve a variety of 
mazes. Mobile eye-trackers, physiological wristbands and motion sensors captured their 
behavior and social interactions. In this paper, I leverage prior work on joint visual attention 
(Tomasello, 1995) and analyze the eye-tracking data collected during the study. This paper 
provides three contributions: 1) I use an emerging methodology to capture joint visual attention 
in a co-located setting using mobile eye-trackers (Schneider & al., 2018); 2) I then replicate 
findings showing that levels of joint visual attention are positively correlated with collaboration 
quality; 3) finally, I present a new measure that captures cycles of collaborative / individual 
work, which is positively associated with learning gains (but not with collaboration quality). I 
discuss these results and conclude with implications for capturing students’ interactions in co-
located spaces using Multimodal Learning Analytics. 

Introduction 
In the last decade there has been a growing interest in cultivating skills that are not traditionally taught in 
traditional school settings. Those skills are often referred to as “21st century skills” (Dede, 2010; e.g., 
Collaboration, Communication, Creativity, Critical Thinking) because they are deemed essential for jobs that do 
not yet exist. New learning environments, such as digital fabrication labs and makerspaces, are ideal spaces for 
their development. They allow students to learn complex concepts in STEM (Science, Technology, Engineering, 
Mathematics) through hands-on learning and applied projects. Measuring the development of those skills and 
providing formative assessment, however, remains a challenge (Berland, Baker, Blikstein, 2014), because each 
student is unique, and the development of those 21st century skills takes different forms depending on interacting 
factors (e.g. learners’ personalities, prior knowledge, SES background). The CSCL community has long been 
studying those skills before they gained a renewed attention from researchers and the general public.  

For the scope of this paper, I focus on students’ collaboration and communication by leveraging a new 
field of research called Multimodal Learning Analytics (Blikstein & Worsley, 2016; MMLA) to capture the 
quality of learners’ interactions. MMLA uses multiple high-frequency sensors to capture users’ behavior and 
applies data mining techniques to find trends and predictors in large datasets. Joint visual attention has been 
extensively studied by social and developmental psychologists and has been shown to be critical to many social 
interactions.  Based on prior literature (e.g., Richard & Dale, 2015; Schneider & Pea, 2013), the main hypothesis 
of this paper is that productive groups exhibit higher levels of joint attention compared to less productive groups. 
This construct was captured using multiple mobile eye-trackers in co-located spaces (Schneider & al., 2018). 
More specifically, I designed a hands-on task typical of makerspaces (i.e., learning to program a robot to solve a 
variety of mazes) and computed measures of joint visual attention.  correlated them with three outcomes measures: 
the quality of their collaboration (coded with a validated rating scheme in the learning sciences), their task 
performance (i.e., how successful they were) and their learning gains (computed from a pre and post-test). Finally, 
because collaboration can be a powerful way to support learning, I analyzed the eye-tracking data to find behaviors 
that were not just related to collaboration quality, but also learning outcomes. 

This paper is structured as follows: the first part reviews the literature on dual eye-tracking and the 
various measures that researchers have developed over the years to capture joint visual attention. The second part 
describes the study, participants and data collection protocol. The third part discusses the steps to pre-process the 
data and compute metrics of joint visual attention to correlate them with outcomes of interests. Finally, I discuss 
our results and conclude with future steps for capturing students’ 21st skills in makerspaces using MMLA. 

Literature review  
This section provides a succinct review of foundational work in developmental and social psychology, as well as 
in Computer-Supported Collaborative Learning (CSCL) and Computer-Supported Collaborative Work (CSCW) 
where multiple eye-trackers are used to look at participants’ visual alignment.  
     There are currently three strands of research studying collaborative processes through dual eye-tracking. 
The first strand uses remote eye-trackers to capture joint visual attention, where users are each looking at a 
different computer displays (for example through video conferencing). In an early study, Richardson & Dale 
(2005) explored the coupling between speakers’ and listeners eye movements and its relationship with discourse 
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comprehension. They found a positive correlation between discourse comprehension and dynamic coupling 
between conversants’ eye movement. In a subsequent study, they replicated those results for a live conversation 
(Richardson, Dale & Kirkham, 2007). In CSCL, researchers have used this methodology to study pair 
programming tasks (Jermann, Mullins, Nüssli & Dillenbourg, 2011) and found that collaboration quality was 
characterized by higher levels of “gaze cross-recurrence” (i.e., joint visual attention). A second strand of research 
has started to study more ecological settings using mobile eye-trackers. Yu and Smith (2013), for example, used 
mobile eye-trackers to explore infant cross-situational word learning through eye-hand coordination. In education, 
Schneider & al. (2018) studied apprentices in logistics interacting with a tangible user interface. They found that 
levels of joint visual attention (as captured by mobile eye-trackers) were correlated with their quality of 
collaboration. Additionally, they developed a methodology to capture leadership behaviors from dual eye-tracking 
data by identifying who initiated and who responded to an offer of joint visual attention. Imbalances of these 
behaviors were negatively correlated with learning gains. Finally, a last strand of research has started to explore 
the benefits of novel visualization techniques to improve learning in a collaborative setting, for example by 
displaying participants’ gaze to each other. This intervention is sometimes called a “gaze awareness tool”, “shared 
gaze visualization” or “Bidirectional Gaze” (for a review, see D’Angelo & Schneider, 2018). D'Angelo & Begel 
(2017) have enhanced remote pairs’ speed and success in communicating when resolving a coding problem by 
using eye tracking devices to show each participant where their partner is looking on the screen. In education, 
Schneider & Pea (2013) found that making the gaze of each partner visible promoted interactions of higher quality 
and consequently increased students’ learning gains. 
     In conclusion, there is ample work showing that joint visual attention is a central mechanism by which 
group members coordinate their actions and establish a common ground (Clark & Brennan, 1991). Furthermore, 
recent research has been leveraging new sensing technology to quantify joint visual attention in dyads of users 
(e.g, Jermann, Mullins, Nüssli & Dillenbourg, 2011). While most studies have looked at remote collaborations, 
there is some nascent work in co-located settings using mobile eye-trackers (e.g., Yu & Smith, 2013). Ultimately, 
however, the goal from a CSCL perspective is to understand how collaborative processes contribute to learning. 
Joint visual attention (JVA), for example, is a necessary but not sufficient condition for productive social 
interactions. This paper is about going beyond capturing JVA and finding more precise indicators of collaborative 
learning. This paper builds upon prior findings (e.g., Schneider & al., 2018), replicates  results, and provides new 
contributions by isolating collaborative learning processes from the eye-tracking data.  

Methods 

Summary of the study 
In this study, participants with no prior programming knowledge were given 30 minutes to program a robot to 
autonomously solve a series of increasingly complex mazes (see Fig. 1 for the setup of the experiment). Two 
different interventions were developed and used to support collaboration: a visualization of relative verbal 
contributions of the participants shown in real time and a brief informational explanation delivered verbally 
summarizing literature findings on the value of collaboration for learning. While dyads completed the activity, a 
variety of sensors described in 2.2 collected eye gaze, movement, verbal, and electrodermal activity data on 
participants. Dependent measures were an assessment of the quality of the collaboration, how well the participants 
coded the robot to perform the assigned task, and learning gains related to computational thinking. The study is 
described in more detail in Starr, Reilly & Schneider (2018).   

Participants 
Participants were drawn from an existing study pool at a university in the northeastern United States. 42 pairs of 
participants (N=84) were used in the analysis. 62% of participants identified as students, with ages ranging from 
19 to 51 years old (mean age = 26.7 years). 60% of participants identified as female. Participants were paid $20 
for the 90-minute session and did not know each other prior to the study. 

Experimental design 
The study utilized a two-by-two between-subjects design where dyads were assigned to one of four conditions 
that would receive different interventions. 25% of dyads received neither intervention (Condition #1), 25% 
received solely the visualization intervention (#2), 25% received solely the informational intervention (#3) while 
the remaining quarter received both interventions (#4). The speech equity visualization utilized speech collected 
by the sensors in the experiment to display how much each participant spoke as a proportion of total talk during 
the activity. Dyads with this intervention saw a tablet display representing this data over the past 30 seconds by 
presenting colored rectangles that grew to take up more of the screen as relative contribution increased. The 
informational intervention involved a researcher reading a short passage that reminded dyads that they were 
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expected to collaborate and invited dyads to think about how they were collaborating during the activity. They 
were also told that research has found that equity of each partner's speech time is predictive of the quality of 
collaboration and learning gains. For an analysis of the differences between each experimental condition, please 
see Starr, Reilly & Schneider (2018).   

Procedure 
After taking the pre-survey and calibrating all sensors, participants were shown a short tutorial video that 
introduced the basics of writing a program in Tinker, a block-based programming language designed for use with 
the microcontroller of the robot. Participants were then given five minutes to write code that would move the 
robot forward across a red line roughly two feet directly in front of it. The robot consisted of a microcontroller, 
two DC motors, and three proximity sensors. Following this tutorial activity, a second tutorial video was shown 
that highlighted more advanced features of Tinker such as using prewritten functions to turn the robot and using 
sensor values to trigger conditional statements. Dyads were also given a reference sheet summarizing the content 
covered in the tutorial video. Dyads then had 30 minutes to write code to navigate a robot through a series of 
mazes. Once the robot successfully completed a maze twice, a more challenging maze was provided. Dyads did 
not know the layout of the mazes ahead of time and were encouraged to write code that would allow the robot to 
solve any simple maze. During this portion of the study, the researcher provided standard hints at 5-minute 
intervals to all dyads regarding common pitfalls researchers identified in pilot testing of the activity. 

Independent, dependent measures and process data 
The quality of the dyad’s collaboration and task performance was assessed during the task by the researcher 
running the session. The quality of collaboration was measured by aggregating the nine scales adapted from Meier, 
Spada, & Rummel (2007): sustaining mutual understanding, dialogue management, information pooling, reaching 
consensus, task division, time management, technical coordination, reciprocal interaction, and individual task 
orientation (refer to Meier, Spada, & Rummel, 2007 for a definition of those terms). Researchers double-coded 
20% of the sessions and had a Cronbach’s alpha of .65 (75% agreement). Task behaviors evaluated included task 
performance (how many mazes were completed by the robot in 30 minutes), task understanding (how much major 
coding concepts were included in the design such as using sensors with appropriate thresholds in conditional 
statements), and improvement over time (how much a team’s understanding of requisite technical skills and 
conceptual understanding of the task changed over time). The final written code of the dyad’s was also assessed 
to determine theoretically how well it could have performed the assigned task barring technical issues. To assess 
learning of computational thinking principles, participants individually completed pre- and post-surveys 
consisting of four questions related to conditional statements, looping, and interpreting the output of given code 
(adapted from Brennan & Resnick, 2012; Weintrop & Wilenski, 2015). After the activity, participants also self-
assessed their collaboration and wrote a brief reflection regarding how their thinking changed over the course of 
the activity. Table 1 presents a summary of the measures described in this section. 
 
Table 1: Independent, process and dependent measures looked at in this paper (described above) 
 

Independent Measures (2x2) Process Measures Dependent Measures 

Speech visualization (on/off) 
Verbal intervention (yes/no) 

Eye-tracking data: 
Individual gaze 
points on AOIs, Joint 
Visual Attention 

Collaboration quality (9 sub-scores; 1 overall score) 
Task performance: code quality, improvement, # of 
mazes solved) 
Learning gains (computational thinking) 

Dual eye-tracking measures and hypotheses 
Prior work has explored multiple ways of capturing joint visual attention and collaborative processes from dual 
eye-tracking data. In this paper, I first follow a methodology described by Schneider & al. (2018) to compute joint 
visual attention from mobile eye-trackers and attempt to replicate previous results showing that JVA is associated 
with collaboration quality. Second, I was inspired by previous results showing that collaborative problem-solving 
is a cycle between moments of understanding and non-understanding (Miyake, 1986), and that ideal cycles of 
communication are related to group performance (Tschan, 2002). In this paper, I hypothesize that collaborative 
learning interactions are characterized by more frequent cycles of individual work and group interactions – which 
are captured from the eye-tracking dataset. In short, the hypotheses of this paper are as follows:  

1. JVA is associated with higher quality of collaboration; more specifically, JVA is associated with 
participants’ ability to sustain mutual understanding (Schneider & Pea, 2013). 

2. The number of cycles of individual work (no-JVA) and collaborative interactions (JVA) is positively 
associated with the three outcome measures (collaboration, task performance, learning gains). 
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In the next section, I describe the data, preprocessing steps and measures. 

Data collection (multimodal sensors)  
Several sensors were used to collect data from both participants in each session. Tobii Pro Glasses 2 eye-tracking 
glasses were worn by each participant to follow eye gaze relative to a set of fiducial markers placed around the 
study environment. An Empatica E4 wrist sensor tracked participant electrodermal activity, blood volume pulse, 
and acceleration. Finally, a Kinect motion sensor was used to track the movement and position of the participants 
in space. This sensor collects approximately 100 variables related to a person’s body joints and skeleton (24 
different points with columns for x, y, z coordinates), their facial expressions, and their amount of speech. 
Typically collected at 30 Hz, this results in roughly 5.4 million observations per individual during a 30-minute 
session. 
     This paper focuses on the Tobii eye-tracker and the data it generates. The glasses include multiple 
cameras (two infrared cameras recording eye movements and one scene camera recording the participant’s field 
of view), an accelerometer, gyroscope, microphone, a wearable recording unit running and associated controller 
software running on Windows. The Tobii eye-Tracker outputs data of multiple kinds including an audio recording 
of the session, a video recording from the point of view of the user, the x and y coordinate of the user’s eye-gaze 
relative to its point of view. These glasses sampled at 50 Hz, generating roughly 90,000 observations per person 
during the main 30-minute activity. No participant reported being bothered by the glasses. Anecdotally, a few 
participants forgot that they were wearing them and attempted to leave the room without removing the glasses at 
the end of the study.  

 
Figure 1. Example of a video frame generated for sanity-checking purposes where a homography was used to 

remap participants’ gaze (shown in blue and green on the right side of the image) onto a ground truth (left side). 
The white lines represent the points detected from the fiducial markers to do the homography. On the left, the 

gaze points turn red if there are within a certain radius (e.g., 100px), which signifies some joint visual attention. 

Data preprocessing – Temporal and spatial alignment 

Temporal alignment  
In order to clearly mark when transitions between different portions of the study took place across all sensors and 
recording devices, several fiducial markers with accompanying audio cues were placed in a PowerPoint 
presentation used by researchers and participants to guide the flow of the study. Whenever specific points in the 
study were reached, participants would simultaneously see the fiducial marker, hear the sound, and press a button 
on the EDA bracelet. In this way, all of the sensors on both participants as well as the video recorder would have 

CSCL 2019 Proceedings 44 © ISLS



some tagged record of the event and therefore a way to synchronize all of the data.  The eye-tracking data analyzed 
in this paper is solely from the main 30-minute portion of the study and was synchronized via these tags. 

Spatial alignment  
One challenge of using mobile eye-trackers is that users can freely move - they can walk around, stand, sit, and 
change the orientation of their head. Their eye gaze is calibrated on the frames provided by the scene camera, 
which changes in its content depending on where users are looking. This kind of data is significantly more 
challenging to analyze compared to traditional (i.e. remote) eye-trackers, where the main area of interest is the 
screen of a computer. Thus, when using a mobile eye-tracker, we need to identify which part of the environment 
users are looking at. The solution used in this paper is to add fiducial markers to the environment (they look like 
QR codes on Figure 1). Detecting those markers is relatively easy for computer vision algorithms, and since they 
each have a unique ID they provide common coordinates across different perspectives. More specifically, a 
panoramic picture of the workspace (Fig. 1, left side) and the markers detected from the scene camera of the 
mobile eye-tracker (Fig. 1, right side) were associated to the markers of the workspace (referred to as “ground 
truth” below). Knowing this common set of points allowed to infer the location of users’ gaze points on a common 
plane using a homography. The left side of Figure 1 shows the last 5 gaze points for each user (shown as a gaze 
plot; additionally, the dots turn red if they are within 100 pixels of each other). Finally, for each group a video 
recording was generated for sanity checking purposes and to make sure that the homography was accurate. 

Results  

Areas of Interest (AOIs) 

 
Figure 2. AOIs on the ground truth and Gaze points on each AOI. On the left: the distribution of gaze points for 
one group (42). On the right: the percentage of eye-tracking data for each AOI (y-axis) and for each group (x-

axis). “Outside Ground Truth” refers to the gaze points outside the image shown on the left side of Fig. 1. 
 
Areas of Interests (AOIs) divide the participants view into 7 different regions, at three different height levels. At 
the lower level, they differentiate between looking at the computer screen where participants wrote code and 
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looking around it. At the level of the maze, they differentiate gaze points within the maze and outside the maze. 
Finally, at the level of the wall, they separate the area corresponding to the speech visualization (only relevant to 
groups having access to it, i.e. condition #2 and #4) from the one around it. 
     Running Pearson’s correlations between the number of gaze points on each AOI at the individual level 
generated the following results: looking at the maze and code quality (r(37) = 0.331, p = 0.040) / learning gains 
(r(37) = 0.360, p = 0.025). Additionally, there were negative correlations between looking at the computer screen 
and code quality (r(37) = -0.320, p = 0.047); looking at the first cheat sheet and sustaining mutual understanding 
(r(36) = -0.364, p = 0.025) / quality of collaboration (r(36) = -0.323, p = 0.048); looking at the second cheat sheet 
and task performance (r(36) = -0.608, p < 0.001) / code quality (r(37) = -0.350, p = 0.029). In summary, looking 
at the number of times that individual participants looked at different AOIs seemed to be mostly associated with 
negative outcomes.  

Cross-recurrence graphs 
Before computing measures of joint visual attention, it is recommended to generate cross-recurrence graphs to 
sanity check the data. A Cross-Recurrence Graph (Jermann, Mullins, Nüssli & Dillenbourg, 2011) is a plot 
representing the eye-tracking data of the dyad. One axis is the time for one person and the other axis is the time 
for the other participant. If the two people are looking at the same location at the same time, we plot a black dot 
along the diagonal. If there is a delay, we plot this point above and below the diagonal. The distance from the 
diagonal is proportional to the delay. Therefore, by looking at the points on the diagonal we can estimate visual 
coupling within the pair. Gray dots represent no joint visual attention and white dots represent missing data. 
    Cross-recurrence graphs provided a visual representation of the groups’ attentional alignment. I 
generated one for each group and used them as a sanity check for the JVA measures (Fig. 3): for example, it 
confirmed that group 42 had high levels of JVA, which is represented by more black pixels. Group 38 had low 
levels of JVA which is represented by more white pixels. Color-coded cross-recurrence graphs (i.e., using the 
colors from Fig. 3) also helped us observe patterns of interaction: groups spent most of their time looking at the 
computer screen (gold), and the maze (green).  
        

Group 42 (high JVA and learning gains) Group 38 (low JVA and learning gains) 
B&W Colored  with AOIs B&W Colored with AOIs 

    
Figure 3. Cross-recurrence graphs for two dyads. The left side shows moments of joint visual attention (black), 
no joint visual attention (gray) and missing data (white). The right side shows join attention on particular AOIs 
(gold = computer screen, green = maze). The two graphs on the left show a productive group with high learning 

gains (42), and the two graphs on the right shows a group with low learning gains (38). 

Joint Visual Attention 
Joint Visual Attention (JVA) was computed according to prior research (Richard & Dale, 2015; Schneider & al., 
2018; Schneider & Pea, 2013; Gergle & Clark, 2011). As a first pass, I used a radius of 100 pixels for two gaze 
points to be considered as JVA (this radius is shown on Figure 1). For each gaze point, I also checked whether 
the other group member looked at the same area within +/- 2 seconds (which has been shown to be the amount of 
time necessary for someone to disengage from what they are doing and pay attention to a partner’s actions; 
Richardson). The results are summarized below.  
     I found significant correlations between JVA and: “sustaining mutual understanding”: r(36) = 0.397, p 
= 0.014; “task division”: r(36) = 0.351, p = 0.031; and their overall quality of collaboration: r(36) = 0.341, p = 
0.036 (see Meier, Spada, & Rummel. 2007 for a definition of those constructs). There was no significant 
correlation with task performance or learning gains. It should be noted that I also looked at other radius sizes in 
addition to 100 pixels (50, 150, and 200 pixels) which defined the distance between two gaze points to be 
considered as a moment of joint visual attention. In these analyses, the size of the radius did not influence the 
correlations reported above.  

Cycles of collaboration (JVA) and individual work (no-JVA) 
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For those analyses, I look at the number of times participants shifted between collaborative work (i.e., with 
increased levels of joint visual attention) and individual work (i.e., with lower levels of joint visual attention). I 
tried several approaches and found that the following steps provided the most conclusive measure: 1) I summed 
the number of moments of JVA for different time windows (a 60 second time window is shown on Fig. 4); 2) I 
compared each observation with the previous point and looked at whether JVA was going up or down; 3) I counted 
the number of times the group shifted from increasing to decreasing (and vice versa) their levels of JVA. In other 
words, this measure offers an estimate for cycles of individual and collaborative work. 

 
Figure 4. Levels of joint visual attention over time for two groups. Group 15 had the lowest number of cycles 

according to the measure above (12) and group 28 had the larger number of cycles (24). 
 
This measure was correlated with learning gains using 30 seconds increment (i.e., 30sec., 60sec., 90sec., 120sec.).  
I found significant correlations with a 30 second window: r(35) = 0.349, p = 0.035, 90 sec. window: r(35) = 0.355, 
p = 0.031, 120 sec. window: r(35) = 0.515, p = 0.001 but not with a 60 sec. window: r(35) = 0.001, p = 0.99. 
Finally, by looking at smaller time windows between 10sec and 60sec., there was a time window (40 sec.) that 
was significantly correlated with all three dependent measures: overall quality of collaboration r(34) = 0.347, p = 
0.038, Task Performance r(34) = 0.355, p = 0.034 and Learning gains r(35) = 0.398, p = 0.015. There was no 
significantly correlation between the aggregated JVA measure reported in the section above (i.e., the total amount 
of JVA) and the measure described in this section - which suggests that they are capturing two different constructs. 
I discuss these results below. 

Discussion 
This paper replicates prior results showing that JVA is positively correlated with high quality collaborative 
interactions (Jermann, Mullins, Nüssli & Dillenbourg, 2011; Schneider & Pea, 2013; Schneider, Sharma, Cuendet, 
Zufferey, Dillenbourg & Pea, 2018). It also provides further evidence that JVA can be computed in a co-located 
setting using fiducial markers disseminated in the environment. Since most of the prior work was done in remote 
settings, it is timely that new approaches allow researchers to study collaborative learning in more ecological 
ways. The final and main contribution of this paper is a new measure that captures cycles of collaboration and 
individual work in dyads. This measure provides a complementary lens into collaborative processes: I found JVA 
to be positively associated with collaboration quality, and this new measure with learning gains (as well as task 
performance and collaboration quality, depending on the threshold used). This suggests that an important feature 
of successful collaborative learning groups is to balance individual cognition with group work. While this is 
beyond the scope of this paper, future work will study this effect in more detail by qualitatively analyzing dyads 
that are driving this effect (i.e., groups with low learning gains and low scores on this measure, and dyad with 
high learning gains and high scores on this measure). Additionally, I am planning to replicate the findings above 
on a different dataset, which would provide further evidence that cycles of collaboration and individual work 
positively contribute to learning. 

Conclusions 
This paper presents a study where dyads of participants worked on programming a robot to solve a variety of 
mazes. I found that Joint Visual Attention can be captured using dual eye-trackers in co-located settings, and that 
this measure is positively correlated with collaboration quality. Additionally, I designed a new measure intended 
to capture cycles of individual work and group collaboration. This measure shed a new light on what constitutes 
productive interaction in dyads of students. 
      It should be acknowledged that this paper has several limitations (for a discussion of the limitations 
related to the task and the dependent measures used, please refer to Starr, Reilly & Schneider, 2018). First, this 
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paper mostly relied on correlations. While this provides intuitive results, future work should use more 
comprehensive statistical tests to model participants’ interactions and control for collinearity. Second, the new 
measure presented in this paper relies on several parameters (minimum distance between two gazes to qualify as 
joint visual attention, different time windows) that were arbitrary defined. A better understanding of how those 
parameters need to be fine-tuned is important for generalizing this measure to other settings. Finally, dual eye-
tracking only offers a limited view of collaborative processes. Future work will integrate sensor data from multiple 
modalities (e.g., electrodermal, motion and speech data) to get a more complete picture of what constitutes 
productive interactions in co-located settings. 
     In conclusion, this study shows that it is possible to develop new ways of capturing 21st century skills 
in hands-on tasks typical of makerspaces. Even with the limitations mentioned above, this work makes a first step 
in this direction and opens the way to more rigorously studying collaborative processes in open-ended learning 
environments using dual mobile eye-trackers.  
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