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Abstract: Due to the ubiquity of IT in workplaces and increasing customer demands, 
employees need skills that often remain unrecognised in companies. We draw attention to 
�Z�K�D�W�� �Z�H�� �F�D�O�O�� �7�H�F�K�Q�R���P�D�W�K�H�P�D�W�L�F�D�O�� �/�L�W�H�U�D�F�L�H�V�� ���7�P�/���� �±���P�D�W�K�H�P�D�W�L�F�D�O�� �N�Q�R�Z�O�H�G�J�H�� �W�K�D�W�� �L�V��
situated in the work context and mediated by the available technology. We describe a research 
project in which we identified through workplace ethnography the TmL required in several 
industrial sectors. Then we carried out design experiments in which we developed learning 
opportunities for particular samples of employees. These learning opportunities included 
�W�H�F�K�Q�R�O�R�J�\���H�Q�K�D�Q�F�H�G���E�R�X�Q�G�D�U�\���R�E�M�H�F�W�V�����7�(�%�2�V�����±���F�R�Pputer tools that were reconfigurations 
of symbolic mathematical artefacts that employees use at work but where the underlying 
mathematical models are mostly unknown and generally poorly understood. In this paper we 
give examples from manufacturing industry. 

Introduction
There has been a radical shift in the mathematical skills required in modern workplaces, which is only 

slowly being recognised by employers and educators. In the research project that we describe here, Techno-
mathematical Literacies in the Workplace (www.lkl.ac.uk/technomaths), we explored the nature of this shift and 
developed novel forms of learning intervention to assist employees in developing their mathematical skills. 
�7�K�H�U�H���K�D�V���E�H�H�Q���P�X�F�K���G�L�V�F�X�V�V�L�R�Q���D�E�R�X�W���³�V�N�L�O�O�V���J�D�S�V�´���I�Rr mathematics in workplaces and the non-transferability 
of school mathematics. We have argued, on the basis of previous research (e.g., Hoyles, Wolf, Molyneux-
Hodgson, & Kent, 2002; Noss, Pozzi & Hoyles, 1999) that there is a need to characterise more precisely the 
nature of mathematics used in the workplace, and the essential characteristics of the knowledge required in work 
that is increasingly information technology-mediated. With the ubiquity of IT in many industries, employees 
now require Techno-mathematical Literacies, mastery of mathematical knowledge that is shaped by the systems 
that govern their work (Bakker, Hoyles, Kent, & Noss, 2006). We discovered in the sample of manufacturing 
sectors that we studied, which represent the range of�� �P�D�Q�X�I�D�F�W�X�U�L�Q�J�� �I�U�R�P�� �³�O�R�Z���W�H�F�K�´�� �W�R�� �³�K�L�J�K���W�H�F�K�´���� �W�K�D�W��
employees often lack these critical skills, and companies struggle to improve them because standard training of 
�P�D�W�K�H�P�D�W�L�F�D�O���V�N�L�O�O�V���W�K�D�W���I�R�O�O�R�Z�V���W�K�H���³�G�H�F�R�Q�W�H�[�X�D�O�L�V�H�G�´���D�S�S�U�R�D�F�K���R�I���I�R�U�P�D�O���H�G�X�F�D�W�L�R�Q���G�R�H�V���Q�R�W���V�X�I�I�L�F�H����

The research set out to characterise and develop the Techno-mathematical Literacies (TmL) needed for 
effective practice in workplaces. Common trends in manufacturing are towards high levels of automation and an 
increasing focus on flexible response to customer needs. This puts a particular stress on skills of employees at 
�W�K�H���³�L�Q�W�H�U�P�H�G�L�D�W�H�´���O�H�Y�H�O�����L���H�����U�R�X�J�K�O�\���D�W���W�K�H���O�H�Y�H�O���R�I���K�Lgh-school qualifications, or employment-based equivalents 
�±���D�E�R�Y�H���E�D�V�L�F���T�X�D�O�L�I�L�F�D�W�L�R�Q�V���E�X�W���E�H�O�R�Z��graduate level), typical roles being senior technical operators on the shop 
floor or first-level supervisory managers (sometimes called shift leaders). For such employees the new ways of 
working involve them extensively in communicating with mathematically expressed information in the form of 
computer input and output, production statistics, statistical analyses of processes, and other paper or computer-
based documents that contain information expressed symbolically. The aim of the first research phase was to 
elaborate the nature of the mathematical skills required by these employees, and to understand how TmL are 
needed to reason with symbolic information and integrate it into decision-making and communication. 

In our observations of workplaces, we adopted an explicit mathematical focus from the outset, and 
sought to identify artefacts used in workplaces which involve symbolic representations of the mathematical 
relationships inherent in workplace processes. We found that such artefacts were generally intended to 
�F�R�P�P�X�Q�L�F�D�W�H�� �E�H�W�Z�H�H�Q�� �G�L�I�I�H�U�H�Q�W�� �F�R�P�P�X�Q�L�W�L�H�V�� �²�� �V�X�F�K�� �D�V between the manufacturing shop floor, middle and 
senior managers, and process/systems engineers. Intermediate level employees were often pivotal in such 
communications. Yet the artefacts often failed in their communicative function. We investigated in detail how 
these artefacts did or (more often) did not function as communicative devices. This focus, and our desire to 
enhance as well as understand TmL, led us to take the notion of a boundary object as an orienting concept for 
our research. Boundary objects are artefacts that exist in several communities of practice and satisfy the 
informational requirements of each (Bowker & Star, 1999). In our research we not only identified the TmL 
required by employees, but also designed learning opportunities that would support employees in developing the 
�D�S�S�U�R�S�U�L�D�W�H�� �7�P�/�� �±�� �W�K�H�� �D�L�P�� �R�I�� �W�K�H�� �V�H�F�R�Q�G�� �U�H�V�H�D�U�F�K�� �S�K�D�V�H���� �2�Q�H�� �R�I�� �W�K�H�� �N�H�\�� �P�H�D�Q�V�� �R�I�� �V�X�S�S�R�U�W�� �I�R�U�� �O�H�D�U�Q�L�Q�J�� �Z�H�U�H��
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what we call technology-enhanced boundary objects (TEBOs), which were intended to improve communication 
in a workplace situation by introducing new software-based forms of mediation for the mathematically 
expressed knowledge. 

�,�Q���W�K�H���I�R�O�O�R�Z�L�Q�J���Z�H���I�L�U�V�W���F�K�D�U�D�F�W�H�U�L�V�H���7�(�%�2�V���D�Q�G���R�X�U���U�H�V�H�D�U�F�K���P�H�W�K�R�G�V�����:�H���W�K�H�Q���S�U�H�V�H�Q�W���W�K�H���S�U�R�M�H�F�W�¶�V��
findings in manufacturing industry. Finally we discuss some potential implications for training in workplaces. 

Technology-enhanced boundary objects 
Knowledge is problematic in organisations because it is both a critical resource for process 

�L�P�S�U�R�Y�H�P�H�Q�W�� �D�Q�G�� �D�� �E�D�U�U�L�H�U�� �E�H�W�Z�H�H�Q�� �W�K�H�� �³�F�R�P�P�X�Q�L�W�L�H�V���R�I�� �S�U�D�F�W�L�F�H�´�� ���F�I������ �:�H�Q�J�H�U���� ������������ �R�U�� �³�D�F�W�L�Y�L�W�\�� �V�\�V�W�H�P�V�´��
���(�Q�J�H�V�W�U�|�P���� ������������ �Z�L�W�K�L�Q�� �D�Q�� �R�U�J�D�Q�L�V�D�W�L�R�Q���� �V�X�F�K�� �D�V�� �W�K�H��managers, shift leaders, operators and engineers in a 
manufacturing context. Knowledge being both a necessity and a cha�O�O�H�Q�J�H���� �³�N�Q�R�Z�O�H�G�J�H�� �E�R�X�Q�G�D�U�L�H�V�´�� ���&�D�U�O�L�O�H����
2002) are interesting places for research. Star and Grie�V�H�P�H�U�����������������L�Q�W�U�R�G�X�F�H�G���W�K�H���Q�R�W�L�R�Q���R�I���E�R�X�Q�G�D�U�\���R�E�M�H�F�W���D�V��
an analytical focus for understanding communication within and between organisations. Many other researchers 
have since drawn on this concept, and identified several examples: classifications, scientific categories and 
�V�W�D�Q�G�D�U�G�V�� ���%�R�Z�N�H�U�� �	�� �6�W�D�U���� �������������� �F�D�X�V�H�� �P�D�S�V���� �Q�D�U�U�D�W�L�Y�H�� �P�D�S�V���� �P�R�G�H�O�V���� �V�F�K�H�P�H�V�� ���%�R�O�D�Q�G�� �	�� �7�H�Q�N�D�V�L���� ��������������
�P�H�G�L�F�D�O���F�O�D�L�P���I�R�U�P�V���S�U�R�F�H�V�V�H�G���W�K�U�R�X�J�K���W�K�H���G�L�I�I�H�U�H�Q�W���G�H�S�D�U�W�P�H�Q�W�V���R�I���D�Q���L�Q�V�X�U�D�Q�F�H���F�R�P�S�D�Q�\�����:�H�Q�J�H�U������������������

We are especially interested in boundary objects that support engagement with mathematical 
knowledge, and have found it most productive to develop these in connection with workplace symbolic artefacts 
that fail to catalyse communication, that is, fail to be boundary objects (for an example see Kent, Noss, Guile, 
Hoyles, & Bakker, 2007). The issue we focus on here is that one typically needs to re-represent mathematical 
knowledge so it can be engaged with by employees from different communities, since employees at 
intermediate level generally lack fluency with standard algebraic symbolisms. Our approach is to reconfigure 
artefacts from the workplace as computer tools, which we call technology-enhanced boundary objects (TEBO) 
provided they meet a few criteria. 

The criteria we define for the computer tools to function as TEBOs are partially derived from the 
definition of boundary object: they should be used in different communities and satisfy informational needs of 
each. Measures of successful use were: continued use in company training courses, �W�U�D�L�Q�H�H�V�¶���S�R�V�L�W�L�Y�H���I�H�H�G�E�D�F�N��
about effects on their workplace practice, and dissemination of the tools by companies to other user 
communities with whom we have not engaged.  

In designing the TEBOs, we have deployed several design principles. First we identified symbolic 
artefacts that were, from our perspective, intended to be boundary objects in the workplace but turned out to be 
�S�U�R�E�O�H�P�D�W�L�F���G�X�H���W�R���H�P�S�O�R�\�H�H�V�¶���O�D�F�N���R�I���X�Q�G�H�U�V�W�D�Q�G�L�Q�J���R�I��the mathematics behind them. Next we re-represented 
them appropriately so they could assist us in revealing the underlying mathematical models on which they were 
based. Hence design principle 1 is: re-represent familiar artefacts in order to reveal relevant mathematical 
structures to employees.  

We adopted a broadly constructionist approach to the learning opportunities (see, e.g., Harel & Papert, 
�������������� �Z�K�L�F�K�� �L�Q�Y�R�O�Y�H�V�� �S�D�U�W�L�F�L�S�D�Q�W�V�� �E�X�L�O�G�L�Q�J�� �D�Q�G�� �P�D�Q�L�S�X�O�Dting computational representations of mathematical 
ideas, and requiring them to express their own ideas through the use of appropriate tools. Design principle 2 can 
be summarised as: use software tools in ways that require participants simultaneously to construct or reconfigure 
symbolic artefacts and negotiate the meanings around them, and to map these back onto familiar practices. 

A third design principle is to co-design with experts from the communities involved (such as 
managers, trainers, and engineers). Without their knowledge of the wor�N�S�O�D�F�H�¶�V�� �F�R�Q�W�L�Q�J�H�Q�F�L�H�V�� �W�K�H�� �W�R�R�O�V�� �Z�L�O�O��
most likely fail to have sustained impact on practice. The TEBO tools developed in the research are accessible at 
the project website (www.lkl.ac.uk/technomaths/tools).

Research methods 
We undertook our research in collaboration with companies, employer federations and vocational 

training organisations in four manufacturing and service sectors in the UK: Financial Services, Pharmaceuticals 
Manufacturing, Packaging and Automotive Manufacturing. In each sector, we visited three to four companies 
�I�R�U���H�W�K�Q�R�J�U�D�S�K�L�F�� �L�Q�Y�H�V�W�L�J�D�W�L�R�Q���� �F�R�P�S�U�L�V�L�Q�J�� �W�\�S�L�F�D�O�O�\�� ���� �W�R��������person-days of site visits, in order to identify and 
characterise the TmL needed to function effectively in each workplace. Methods used included work-
shadowing, analyses of documentation and semi-structured interviews with managers and a wide range of 
employees. We progressively focused on probing the meanings held by different groups involved in the work 
process for the symbolic inputs and outputs of IT systems that were intended as boundary objects. We also 
joined team meetings and process improvement teams in manufacturing.  

In the second research phase, we carried out itera�W�L�Y�H���G�H�V�L�J�Q���E�D�V�H�G���U�H�V�H�D�U�F�K�����&�R�E�E�����&�R�Q�I�U�H�\�����G�L�6�H�V�V�D����
Lehrer, & Schauble, 2003) with our employer-partners to design learning opportunities and develop TEBOs 
aimed at developing the TmL identified in the first phase. This research phase on learning opportunities 
involved two or three companies in each sector, comprising �W�\�S�L�F�D�O�O�\���������W�R���������S�H�U�V�R�Q���G�D�\�V���R�I���V�L�W�H���Y�L�V�L�W�V�����$�O�O���W�K�H��
tools could be accessed through a web browser to ensure maximum availability in workplace settings. The 
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learning opportunities were embedded in activity sequences largely derived from authentic episodes recorded in 
Phase 1 or reported by employer-partners. The tools and activities aimed to allow exploration and discussion of 
the interconnections between the different inputs and outputs within the normally invisible mathematical 
models. 

The effectiveness of our approach to TmL development was assessed through follow-up interviews 
with participants (face-to-face, telephone and email) and continuing communication with employer-partners to 
assess impact in workplace practices. The design-based approach, with its iterative cycles of collaborative 
design, testing and revision also led us to more nuanced understandings of TmL and their use in the workplace, 
since employees' interactions with our software tools provided further data about their appreciation of 
underlying models.  

In evaluating and validating our research, we made use of data from diverse sources. These include: 
workplace artefacts such as graphs, charts and financial statements sent to customers; audio and occasionally 
video recordings of workplace observations and interviews; email trails with co-designers; evaluation forms; 
questionnaires. We sought to triangulate different views of the same workplace activity, through the 
perspectives of employees at different levels of a company, as well as consulting independent experts in the 
industry sectors concerned, in order to guard against biased observations. 

Results of the research: two examples 
Our research in manufacturing developed along two themes, both connected to the drive for greater 

quality and productivity in manufacturing processes: modelling the manufacturing process (4.1), and statistical 
process control (4.2). We provide two examples for illustrative purposes. 

Figure 1. A screen-shot of part of the computer control system for the film production process

Modelling manufacturing processes
In a packaging factory making plastic film by an extrusion process, we investigated how the computer 

control and monitor system served as a boundary object between managers, engineers and shopfloor machine 
operators. The extrusion process is complex, involving about twenty steps: the plastic starts from raw granules, 
�L�V���P�H�O�W�H�G���W�R���I�R�U�P���D���W�X�E�H�����D�E�R�X�W�����������P�L�F�U�R�P�H�W�U�H�V���W�K�L�F�N�������Z�K�L�F�K���W�U�D�Y�H�O�V���W�K�U�R�X�J�K���V�H�Y�H�U�D�O���V�W�D�J�H�V���D�V���D���I�O�D�W���³�W�D�S�H�´���D�Q�G��
is then extruded (stretched) at different temperatures and tensions (that need to be very precisely controlled), 
becoming thinner at each stage until the desired thickness is reached (e.g., ������ �P�L�F�U�R�P�H�W�U�H�V���� �F�D�O�O�H�G�� �³�J�D�X�J�H�´�� �L�Q��
Figure 1). The most sensitive stage of the extrusion process is at what is���N�Q�R�Z�Q���D�V���³�W�K�H���E�X�E�E�O�H�´���±���Z�K�H�U�H���W�K�H���W�D�S�H��
is inflated with compressed air so that it expands by a factor of about 25. In Figure 1, this bubble is represented 
�E�\�� �W�K�H�� �Z�K�L�W�H�� �V�K�D�S�H�� �L�Q�� �W�K�H�� �F�H�Q�W�U�H���� �7�K�H�� �Z�K�L�W�H�� �³�W�K�U�H�D�G�´�� �V�K�R�Z�V�� �W�K�H�� �I�O�R�Z�� �R�I�� �W�K�H�� �I�L�O�P�� �W�K�U�R�X�J�K�� �Y�D�U�L�R�X�V�� �S�U�R�G�X�F�W�L�R�Q��
stages, with temperatures, pressures, etc. displayed, terminating in the bubble. 

Each extrusion line is controlled by a computer system that monitors and records numerous process 
�S�D�U�D�P�H�W�H�U�V���±���W�\�S�L�F�D�O���G�L�V�S�O�D�\�� �V�F�U�H�H�Q�V�����V�H�H���)�L�J�X�U�H�������� �S�U�H�V�H�Q�W���³�I�O�R�Z���G�L�D�J�U�D�P�V�´���U�H�S�U�H�V�H�Q�W�L�Q�J���D�F�W�X�D�O���T�X�D�Q�W�L�W�L�H�V���D�Q�G��
flows such as the temperatures and pressures at different points in the line. The computer system records all 
these process data and stores them as historical data for several months (see Figure 2). These historical records 
are accessible to all, although our ethnography (Noss et al., 2007) indicated that just one or two intermediate 
level employees (the senior shopfloor operators and the line managers) engaged with these as a way of making 
sense of what the process had been doing; and there was no official encouragement from senior management to 
do this. The process engineer working in this area was however personally convinced that if shopfloor 
employees were able to engage with this data, the result would be to have a much improved model of the 
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process; this would lead to more effective operator control of the process and much more efficient production 
for the company.  

Figure 2�����J�U�D�S�K�V���R�I���W�K�H���³�K�L�V�W�R�U�L�F�D�O�´���G�D�W�D�����6�H�Y�H�U�D�O���J�U�D�S�K�V���D�U�H��displayed on a single scale: there are eight different 
scales implicit on the y-axis. Time frame on x axis is 5 hours. 

In the first research phase we identified the following TmL: understanding systematic measurement, 
data collection and display; appreciation of the complex effects of changing variables on the production system 
as a whole; being able to identify key variables and relationships in the work flow; and reading and interpreting 
time series data, graphs and charts, some of which are standard and some idiosyncratic and company-specific. 
We also noted the need for employees to be able to control the process for target mean and minimal variation, 
and to communicate about these values with other employees and with management. Finally, we identified a 
need for employees to appreciate the role���R�I���L�Q�Y�L�V�L�E�O�H���I�D�F�W�R�U�V���±���V�X�F�K���D�V���W�K�H���F�R�V�W���R�I���U�D�Z���P�D�W�H�U�L�D�O�V���D�Q�G���V�H�O�O�L�Q�J���S�U�L�F�H��
�R�I���W�K�H���S�U�R�G�X�F�W���±���L�Q���G�H�W�H�U�P�L�Q�L�Q�J���W�K�H���W�D�U�J�H�W���P�H�D�Q���D�Q�G���Y�D�U�L�D�W�L�R�Q���R�I���W�K�H���S�K�\�V�L�F�D�O���I�L�O�P�����Q�R�Q�H���R�I���Z�K�L�F�K���Z�H�U�H���H�Y�L�G�H�Q�W���L�Q��
the computer-generated data available. 

The TEBO we co-designed with one of the process engineers was a software simulation of the 
production process of making plastic film by extrusion (see Figure 3). To reduce the complexity, just the start 
and end parts of the process are modelled, but the format of the real systems is imitated (cf., Figures 1 and 2). 
Numbers in the white boxes are inputs or parameters that the user can modify. The goal is to achieve stable 
running of the process with film gauge (thickness) at a required target. It is crucial not to make changes that 
�³�E�X�U�V�W���W�K�H���E�X�E�E�O�H�´���R�Q���W�K�H���U�L�J�K�W�����W�K�L�V���L�Q���S�U�D�F�W�L�F�H���V�W�R�S�V���W�K�H���S�U�R�G�X�F�W�L�R�Q���S�U�R�F�H�V�V���I�R�U���D�E�R�X�W���D�Q���K�R�X�U�������7�K�H���J�U�D�S�K�V���L�Q��
the middle show historical data for 9 variables: the top set are inputs or parameters for the start of the process, 
the bottom set are for the end part of the process; on each graph, an appropriate scale appears when a given 
variable is selected. 

We designed learning activities concerned with real events where inputs and control parameters in the 
process have to be changed by the machine operators and outputs interpreted. For example, if one part of the 
process machinery is broken or missing, how can the parameters be adjusted to compensate for this and keep the 
process running? Employees were invited to predict and test outcomes and thus come to appreciate aspects of 
the mathematical relationships embedded in the process. Initially we introduced these activities to employees, 
but the engineer of this production area quickly came to do the training herself. 
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Figure 3. Software tool to model the production of plastic film by extrusion  

The employees and engineer who co-developed the TEBO with us were very positive about the 
�O�H�D�U�Q�L�Q�J�� �R�S�S�R�U�W�X�Q�L�W�L�H�V���� �7�K�H�� �H�Q�J�L�Q�H�H�U���� �³�,�I�� �H�Y�H�U�\�� �R�S�H�U�D�W�R�U�� �Dnd shift leader went through training using the tool 
there would be a base-line level of understanding that we risk not getting with the observational style training 
�Z�H�� �F�X�U�U�H�Q�W�O�\�� �X�V�H���´�� �7�K�H�U�H�� �Z�H�U�H�� �D�O�V�R�� �X�Q�H�[�S�H�F�W�H�G�� �S�D�\�R�I�I�V like the following, which exemplifies what successful 
boundary objects may achieve. The engineer further told us: 

�,�� �W�K�L�Q�N�� �W�K�H�� �W�R�R�O�� �D�O�V�R�� �K�H�O�S�V�� �L�G�H�Q�W�L�I�\�� �S�H�R�S�O�H�¶�V�� �V�W�U�H�Q�J�W�K�V�� �D�Q�G�� �Z�H�D�N�Q�H�V�V�H�V�� �Q�R�W�� �R�Q�O�\�� �L�Q�� �W�H�U�P�V�� �R�I��
film-making process understanding but also logical problem so�O�Y�L�Q�J�� �D�E�L�O�L�W�\���� �,�� �G�L�G�Q�
�W�� �H�[�S�H�F�W��
this. After going through the training activities w�L�W�K���K�L�P�����,���Q�R�Z���N�Q�R�Z���I�D�U���P�R�U�H���D�E�R�X�W���:�L�O�O�L�D�P��
�D�Q�G���W�K�H���Z�D�\���K�H���W�K�L�Q�N�V���D�E�R�X�W���W�K�L�Q�J�V���W�K�D�Q���,��knew before. Speaking as someone who hates open-
�H�Q�G�H�G���W�D�V�N�V�����,�
�P���S�O�H�D�V�H�G���,���F�D�Q���Q�R�Z���J�L�Y�H���W�K�H�P���D�O�O���W�R���:�L�O�O�L�D�P����

�7�K�H�� �H�Q�J�L�Q�H�H�U�¶�V�� �V�X�U�S�U�L�V�H�� �K�H�U�H�� �Z�D�V�� �D�W�� �W�K�H�� �H�[�W�H�Q�W���R�I�� �:�L�O�O�L�D�P�¶�V�� �N�Q�R�Z�O�H�G�J�H�� �R�I�� �W�K�H�� �S�U�R�F�H�V�V���� �Z�K�L�F�K�� �K�H�� �K�D�G��
�Q�H�Y�H�U�� �P�D�G�H�� �H�Y�L�G�H�Q�W�� �R�Q�� �W�K�H�� �V�K�R�S�I�O�R�R�U�� ���³�K�H�� �G�R�H�V�� �Q�R�W�� �V�D�\�� �P�X�F�K���� �G�R�H�V�� �K�L�V�� �M�R�E�� �D�Q�G�� �J�R�H�V�� �K�R�P�H�´������ �D�Q�G�� �Z�K�L�F�K�� �Z�D�V��
inevitably (because of the wo�U�N�S�O�D�F�H�� �F�X�O�W�X�U�H���� �V�R�P�H�W�K�L�Q�J�� �K�H�� �O�D�F�N�H�G�� �Z�R�U�Gs to express, but could display in 
working with the simulation. She was also pleased with the extent to which he was able to apply a logical 
�S�U�R�E�O�H�P���V�R�O�Y�L�Q�J���D�S�S�U�R�D�F�K���W�R���G�H�D�O�L�Q�J���Z�L�W�K���W�K�H���S�U�R�F�H�V�V���S�U�R�E�O�H�P�V���S�R�V�H�G���L�Q���W�K�H���V�L�P�X�O�D�W�H�G���D�F�W�L�Y�L�W�L�H�V���±���R�Q�H���R�I���W�K�H�V�H��
involved dealing with a speed restriction on a motor in one �S�D�U�W���R�I���W�K�H���S�U�R�F�H�V�V�����³�Z�K�L�F�K���K�H���V�R�O�Y�H�G���D�O�P�R�V�W���Z�L�W�K�R�X�W��
�W�K�L�Q�N�L�Q�J���D�E�R�X�W���L�W���´������

Statistical Process Control (SPC) 
SPC is a set of techniques widely used in workplaces as part of process improvement activities 

���2�D�N�O�D�Q�G�����������������3�\�]�G�H�N�������������������8�V�L�Q�J���V�X�F�K���W�H�F�K�Q�L�T�X�H�V���U�H�T�X�L�U�H�V���P�D�Q�\���H�P�S�O�R�\�H�H�V���W�R���L�Q�W�H�U�S�U�H�W���D�Q�G���F�R�P�P�X�Q�L�F�D�W�H��
one-number process measures, which we have observed to be challenging in terms of mathematical and 
�F�R�Q�W�H�[�W�X�D�O���N�Q�R�Z�O�H�G�J�H���U�H�T�X�L�U�H�G�����,�Q���V�Hveral car factories we investigated���K�R�Z���³�S�U�R�F�H�V�V���F�D�S�D�E�L�O�L�W�\���L�Q�G�L�F�H�V�´���Z�H�U�H��
used and trained, and found that the typical introduction of such measures deploys statistical and algebraic 
�V�\�P�E�R�O�L�V�P�� �D�V�� �Z�H�O�O�� �D�V�� �O�D�E�R�U�L�R�X�V�� �P�D�Q�X�D�O�� �F�D�O�F�X�O�D�W�L�R�Q�V�� �W�K�D�W�� �V�H�H�P�H�G�� �W�R�� �K�L�Q�G�H�U�� �H�P�S�O�R�\�H�H�V�¶�� �X�Q�G�H�U�V�W�D�Q�G�L�Q�J�� �R�I�� �W�K�H��
�X�Q�G�H�U�O�\�L�Q�J���P�D�W�K�H�P�D�W�L�F�D�O���U�H�O�D�W�L�R�Q�V�K�L�S�V�����:�R�U�N�L�Q�J���L�Q���S�D�U�W�Q�Hrship with company trainers, we developed tools and 
activities to enhance existing training and shopfloor practice. 

�,�Q���W�K�H���I�L�U�V�W���U�H�V�H�D�U�F�K���S�K�D�V�H�����V�H�H���D�O�V�R���+�R�\�O�H�V�����%�D�N�N�H�U�����.�H�Q�W�����	���1�R�V�V�����������������Z�H���L�G�H�Q�W�L�I�L�H�G���W�K�H���I�R�O�O�R�Z�L�Q�J��
TmL: understanding systematic measurement, data collection and display; appreciation of the complex effects 
of changing variables on the production system as a whole; being able to identify key variables and relationships 
in the work flow; reading and interpreting time series data, graphs and charts; distinguishing mean from target 
and specification and control limits; knowing about the relation between data and measures and process and 
model; understanding and reducing variation, and appreciating the basis of process capability indices and how 
they are calculated. The main putative boundary object we focused on was the SPC chart as filled in and used on 
the shop floor; see Figure 4 for an example. 
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Figure 4. Example of an SPC chart, an intended boundary object 

We developed three TEBOs (two are displayed in Figures 5 and 6) that comprised simulations to make 
the statistical concepts used in SPC training courses more understandable for intermediate-level employees by a) 
simulating the physical experiments that trainees did to generate sample process data, so that after doing them 
manually they were able to generate much larger data sets in the software, making statistical patterns and trends 
easier to perceive, and b) allowing direct manipulation of capability measures with visual feedback, alongside 
the algebraic formulae that are quoted to trainees but, unsurprisingly, barely understood.  

Figure 5�����5�H���F�R�Q�I�L�J�X�U�D�W�L�R�Q���R�I���W�K�H���6�3�&���F�K�D�U�W���D�Q�G���V�L�P�X�O�D�W�L�R�Q���R�I���V�K�R�Y�H���K�D�¶�S�H�Q�Q�\���J�D�P�H��

The first tool (Figure 5) provides a context for the process capability indices Cp and Cpk by 
demonstrating how they can be used in practice to impr�R�Y�H���D���S�U�R�F�H�V�V�����L�Q���W�K�L�V���³�S�U�R�F�H�V�V���L�P�S�U�R�Y�H�P�H�Q�W�´���Y�H�U�V�L�R�Q���R�I��
�W�K�H���%�U�L�W�L�V�K���S�X�E���J�D�P�H���R�I���V�K�R�Y�H���K�D�¶�S�H�Q�Q�\�����D���U�X�O�H�U���L�V���D�W�W�D�F�K�H�G��to a flat board and is used to flick coins along it. The 
simulation allows the user to see repeatedly generate tr�L�D�O�V���R�I���������µ�I�O�L�F�N�V�¶�����S�O�R�W�W�L�Q�J��where the coin stops each time 
on the SPC Chart. The player attempts to improve the process by altering several key process parameters. Two 
other tools model Cp and Cpk (Figure 6 just shows the Cpk tool), measures for how well a process is under 
control and meeting required targets. They turned out to be a visual and interactive representation to help 
employees understand how these measures depend on the statistical behaviour of physical data and the imposed 
human specification of targets. 

The accompanying learning activities were derived from the company training courses or designed to 
stimulate exploration of key mathematical concepts, and expose misunderstandings around basic, but difficult, 
concepts of statistical mean and process target, control limit (derived from data) and process specification (set 
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�E�\���H�[�W�H�U�Q�D�O���F�R�Q�F�H�U�Q�V���D�Q�G���F�R�Q�V�W�U�D�L�Q�W�V�����D�Q�G���W�K�H���Q�R�U�P�D�O�L�W�\���R�I���W�K�H���G�L�V�W�U�L�E�X�W�L�R�Q���±���Q�R�W���D�V���G�H�F�R�Q�W�H�[�W�X�D�O�L�V�H�G���V�W�D�W�L�V�W�L�F�D�O��
concepts but in relation to production processes. 

Figure 6. �6�R�I�W�Z�D�U�H���W�R�R�O���Z�K�L�F�K���P�R�G�H�O�V���&�S�N�����D���S�U�R�F�H�V�V���F�D�S�D�E�L�O�L�W�\���L�Q�G�H�[���±���U�H���U�H�S�U�H�V�H�Q�W�H�G���W�R���P�D�N�H���L�W���H�D�V�L�H�U���I�R�U��
employees to engage with the underlying mathematical relationships

The software tools were highly appreciated by many managers, engineers, trainers and employees. 
Even after the end of the research project we kept hearing stories about international meetings at which they had 
been demonstrated, how they facilitated communication between company engineers and managers or suppliers, 
and how they had enhanced training courses. Based on the feedback, we feel confident that we can consider that 
these tools satisfy the criteria for TEBOs. 

Discussion and implications 
�7�K�H���Q�H�H�G���I�R�U���7�H�F�K�Q�R���P�D�W�K�H�P�D�W�L�F�D�O���/�L�W�H�U�D�F�L�H�V�����7�P�/�����L�V most evident in workplaces that are involved in 

changes in working practices. However, even in sites where the need for change is recognised and supported, we 
�G�L�G�� �Q�R�W�� �I�L�Q�G�� �W�K�D�W�� �W�K�H�� �Q�H�H�G�� �I�R�U�� �7�P�/�� �L�V�� �V�X�I�I�L�F�L�H�Q�W�O�\�� �U�H�F�R�J�Q�L�V�H�G�� �W�K�U�R�X�J�K�R�X�W�� �D�� �F�R�P�S�D�Q�\���� �/�R�Q�J���H�V�W�D�E�O�L�V�K�H�G��
preconceptions about mathematics are deeply ingrained, both in the world of work and the world of education. 
One way these reveal themselves is �Z�K�H�U�H���H�P�S�O�R�\�H�U�V���F�R�P�S�O�D�L�Q���D�E�R�X�W���³�S�R�R�U���Q�X�P�H�U�D�F�\���V�N�L�O�O�V�´���L�Q���S�U�D�F�W�L�F�H�V�����V�X�F�K��
as financial services, where the need for employees to do arithmetic hardly exists due to the total 
computerisation of processes. A central challenge for skills development is to educate both employees and 
managers about the mathematical models and relationships that actually matter but are rendered invisible by IT 
within workplaces. 

�7�K�H���V�N�L�O�O�V���J�D�S���R�I�� �W�H�F�K�Q�R���P�D�W�K�H�P�D�W�L�F�D�O���O�L�W�H�U�D�F�L�H�V���Q�H�H�Gs to be systematically �D�G�G�U�H�V�V�H�G���E�\���H�P�S�O�R�\�H�U�V���±��
we think by working together with educators. It needs commitment of time and resources on the part of 
employers not only to come to terms with the need for this new kind of mathematical understanding, but also to 
develop new pedagogical approaches for training, so as to���P�D�N�H���7�P�/���P�R�U�H���Y�L�V�L�E�O�H���D�Q�G���D�Y�D�L�O�D�E�O�H���I�R�U���H�[�S�O�R�U�D�W�L�R�Q��
and development. The major skills deficit at issue is the understanding of systems, not the ability to calculate. 
Whilst calculation and basic arithmetic remain of subsidiary importance our research suggests they are 
insufficient. Of far greater importance is a conceptual grasp of how, for example, process improvement works, 
how graphs and spreadsheets may highlight relationships, and how systematic data may be used with powerful, 
predictive tools to control and improve processes. 

The methodology of collaborative design involving resear�F�K�H�U�V�� �D�Q�G�� �H�P�S�O�R�\�H�U���S�D�U�W�Q�H�U�V�� �K�D�V�� �U�H�F�H�L�Y�H�G��
rather little attention in research in the workplace. It seems this is partly due to such research falling between 
several more established domains of research: on the one hand sociological and economic studies of 
employment, skills and labour markets, which tend towards general conceptions of knowledge and skills rather 
than specific, technical knowledge domains such as mathematics; and on the other hand educational research in 
�P�D�W�K�H�P�D�W�L�F�V�� �R�U�� �V�F�L�H�Q�F�H�� �O�H�D�U�Q�L�Q�J�� �Z�K�L�F�K�� �K�D�Y�H�� �Z�H�O�O���H�V�W�D�E�O�L�V�K�H�G�� �P�H�W�K�R�G�V�� �R�I�� �L�Q�W�H�U�Y�H�Q�W�L�R�Q�� ���L�Q�� �F�O�D�V�V�U�R�R�P�V���� �D�Q�G��
collaborative work with user�V�� ���W�H�D�F�K�H�U�V���� �E�X�W�� �K�D�Y�H�� �E�H�H�Q�� �G�R�P�L�Q�D�Q�W�O�\�� �I�Rcused in formal education. It is 
undoubtedly a challenge for all participants in multidisciplinary collaborative research who have to strive 
continually to develop a common discourse. Yet our research points to its considerable potential, not only in 
bringing together the range of expertise essential to address technical skills gaps, but also by offering a way to 
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sustain change in practice as employers gradually take control of what began as a researchers-led intervention 
supported by technology-enhanced boundary objects. 

Endnote
(1) The research reported out here was carried out at the University of London; the first author is currently working at the 

Freudenthal Institute for Science and Mathematics, Utrecht University. 
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