Understanding Collaborative Program Comprehension: Interlacing Gaze and Dialogues

Kshitij Sharma, Patrick Jermann, Marc-Antoine Nüssli, Pierre Dillenbourg
CRAFT, École Polytechnique Fédérale de Lausanne, Switzerland
{kshitij.sharma, patrick.jermann, marc-antoine.nuessli, pierre.dillenbourg}@epfl.ch

Abstract: We study the interaction of participants in a pair program comprehension task across different time scales in a dual eye-tracking setup. We identify four layers of interaction episodes at different time scales. Each layer spans across the whole interaction. The present study concerns the relationship between different layers at different time scales. The first and third layers are based on the utterances of the participants while the second and fourth layers are based on participants' gaze.

Introduction
In Computer Supported Collaborative Learning (CSCL), one main open challenge is to use technology to measure the dynamics of interaction. We report recent developments in eye-tracking which show how gaze can be used to reflect cognitive and collaborative processes at various time scales. Thereby we scale up the social unit of analysis from individual to pair and scale down the temporal unit of analysis from the whole interaction to shorter interaction episodes.

With respect to the social unit of analysis, gaze has traditionally been used to assess individual cognition (e.g. eye-tracking studies about reading, program comprehension, etc.). However, in the context of CSCL, a methodology is needed to describe collaborative gaze. Various measures of "gaze togetherness" have been used to indicate the quality of collaboration in dyadic interaction. In general, good collaboration features convergent gaze. Gaze togetherness increases significantly especially during verbal and deictic references. These measures of togetherness are however related to a global time scale and don't consider the evolution of gaze focus during interaction.

With regards to the temporal granularity of analyses, studies have emphasized upon overall measures of individual attention. For example, studies have reported the proportion of time that subjects spent fixating different parts of the interface (Romero et al., 2002; Bednarik & Tukiainen, 2006; Sharif & Maletic, 2010; Hejmady & Narayanan, 2012; Pietinen et al., 2008; Pietinen et al., 2010;). These measures indicate overall gaze behavior (and may be correlated with expertise) but they cannot serve as real-time indicators of collaboration that could be used to provide immediate feedback. In the context of CSCL, the dynamics of interaction and dialogue are important indicators for collaborative knowledge building (e.g. Stahl, 2000). New gaze indicators are needed to reflect the knowledge building at the micro level.

Time scales have been used to describe behavior at various levels. Eye-trackers allow us to capture attention at a time scale that has more information content than the other measures like interface event logs, dialogues or gestures. In a controlled experiment (Lord & Levy, 2008) the duration of eye-fixations are of the order of 100 milliseconds, which gives them a place at the lower end of cognitive behavioral band (Newell, 1994). Cognitive behavioral bands have complex actions (e.g., reading or gestures) at the higher end. Anderson (2002) identifies cognitive modeling as bridging across the behavioral bands by taking the lower level bands into account. We will reuse the levels by Anderson (2002) to refer to the Task (where we usually measure understanding), Unit task (where we usually code dialogues) and Operations (where we usually collect raw data).

Through this contribution, we address both the social and temporal mismatch of current gaze methodology with the study of collaborative interaction. We propose a method to detect interaction episodes based on both gaze togetherness and stability and show that these measures are related to the level of understanding that a pair achieves at the end of the task. To support our proposal, we present a dual eye-tracking study in a remote pair program comprehension scenario.

The remainder of the paper is organized as follows: the second section gives the related work for the present study. The third section describes the main features of the study and the research questions. The fourth section describes the experiment and the various variables. The fifth section presents the analysis results. Finally the sixth section discusses the results and concludes the paper.

Related Work
Adaptive Support for CSCL
Adaptive CSCL has been around for about 10 years. Jermann et al. (2001) proposed a feedback model for collaborative interaction regulation. The regulation is based on the collection of collaborative indicators that are assessed by the system or by the human learners and teachers. More recently, Magnisalis (2011) propose that
web 2.0 and artificial intelligence are increasingly used to design reactive systems and that learners benefit from the adaptation of the systems.

Scaling Up The Social Unit

There are different gaze-based measures of collaboration given by Richardson & Dale (2005), Cherubini et al. (2008) and Pietinen et al. (2010). Richardson & Dale (2005) used “gaze togetherness” as a notion of gaze cross recurrence (how much the participants are looking at the same object at the same time). Cherubini et al. (2008) used eye tracking in a remote collaborative problem solving setup to detect the misunderstanding (distance between the referrer’s and the partner’s gaze points) between the collaborating (through chat) partners. Pietinen et al. (2010) gave a new metric to measure joint visual attention in a co-located pair programming setup, using the number of overlapping fixations and the fixation duration of overlapping fixation for assessing the quality of collaboration. The problem of these measures is that they characterize togetherness on a global temporal level or on an arbitrarily defined timespan (one could partition the interaction into “n” parts but these would not reflect the underlying interactive dynamics).

Linking Gaze and Speech

At the level of operations, there are studies about gaze and speech coupling (Mayer et al., 1998; Griffin & Bock, 2000; Zelsinky & Murphy, 2000). There are different notions for eye-voice span given in different studies but all the notions point towards a strong coupling between speaker’s gaze and speech. Allopenna et al. (1998) showed that the mean delay between hearing a verbal reference and looking at the object of reference (the listeners’ voice-eye span) is between 500 and 1000 milliseconds. The combination of eye-voice and voice-eye coupling is that the gaze of speakers and listeners are coupled with a lag of about 2000 milliseconds. This short term coupling between speaker and listener is at the operation level only and does not inform about the relationship of gaze and dialogue in longer episodes. This is problematic when one is interested in knowledge building episodes that usually consist of several utterances.

Linking Dialogue and Understanding

Concerning the relationship between dialogues and understanding, there is a long-standing tradition of research in CSCL. For example, the elaborated explanations (Cohen, 1994; Webb, 1989) were shown to be beneficial for learning. In the field of tutoring, research has shown that dialogue moves of tutors depend on their assessment of the tutee (Eugenio et al., 2009; Chi et al., 2008; Chi & Roy, 2010) and that they can predict better understanding of the tutee (D’Mello et al., 2010). What is missing is a gaze indicator at the same temporal level as dialogues.

The Domain: Program Comprehension and Eye Tracking

There have been studies (in the past) concerning eye-tracking and programming. Romero et al. (2002) compared the use of different program representation modalities (propositional and diagrammatic) in a debugging study where experts had a balanced shift of focus among the different modalities. Sharif et al. (2012) emphasized the importance on code scan time in a debugging task and conclude that experts perform better and have shorter code scan time than novices. Bednarik & Tukiainen (2006) examined coordination of different program representations in a program understanding task where experts concentrated more on the source code rather than looking at the other representations. Hejmady & Narayanan (2012) compared the gaze shift between different Areas of Interest (AOI) in a debugging Integrated Development Environment (IDE) and concluded that good debuggers were switching between code and the expression evaluation and the variable window rather than code and control structure and the data structure window.

Present Study and Questions

The present dual eye-tracking study examines the relationship between gaze, speech and performance in spatially distributed (remote) pair programming. We chose remote pair programming so that we can have two synchronized streams of eye-tracking data, which is difficult in the co-located pair programming (both programmers looking at the same screen). Baheti & Williams (2002) have shown that pair programming can be conducted remotely without negative effects on performance. We use two synchronized eye-trackers to study the gaze of two persons who have to read, understand, and explain functionality of a JAVA program.

Methodological Question

The present study identifies different time scales to characterize interaction. Our working hypothesis is that it is necessary to define a gaze measure at each level to reflect corresponding cognitive processes. Indeed, measuring gaze at a global task level does not inform about dynamics of interaction and measuring gaze at the operations
level reflects perception more than collaboration, elaboration and dialogue. Hence, our methodological question is what gaze measure reflects the dynamics of dialogue?

Figure 1. Interaction of the pair divided into different levels of time granularities.

We define gaze measures on two levels.
• On the task unit level, gaze episodes correspond to moments characterized by a stable gaze togetherness and gaze focus. For example, in a focused/together episode, programmers look together at a limited set of objects. These episodes typically last from 5 seconds up to 100 seconds.
• On the operations level we use gaze transitions among different set of objects. The transitions are based on a segmentation of gaze into 1-second slots and last for 3 seconds.

We define cognitive measures on two levels:
• On the task level we rate the level of understanding based on the explanations that are provided by the participants.
• On the task unit level we categorize the dialogues of participants depending on whether they are task related (describing the program) or whether they are about managing the task.

Research Questions
The answer to the methodological challenge allows for new research questions to be asked about the relationships between two consecutive levels of time granularity:
Question 1: task level and task unit level: How does the level of understanding relate to the prevalence of different gaze episodes?
Question 2: task unit level: How do the types of gaze episodes relate to the types of dialogue episodes?
Question 3: task unit level and operation level: How do different dialogue episodes relate to the different gaze transitions?

Experiment
In the experiment, pairs of subjects had to solve two types of pair programming tasks. The task consisted of describing the rules of a game implemented as a Java program. The experimental data used for this paper is the same as used in Nüssli (2011) and Jermann & Nüssli (2012), however the questions and analysis presented hereafter are completely different. 32 students participated in the study. The participants were typical bachelor and master students aged from 18 to 29 years old with a median of 23 years old. The participants were paired into 16 pairs without further consideration of their level of expertise, gender, age or familiarity. The subjects did a pretest that consisted of individually answering thirteen short programming multiple choice questions and then collaboratively solved the ten program understanding tasks which overall lasted approximately 45 minutes. Gaze was recorded with two synchronized Tobii 1750 eye-trackers that record the position of gaze at 50Hz in screen coordinates (see Figure 2). The interested reader can find technical details about the setting in Nüssli (2011).

Gaze Tokens
The JAVA program is composed of tokens (see Figure 2, bottom-left). For example, a line of code “location = array [c];” contains 13 tokens (‘location’, ‘=’, ‘array’, ‘[’, ‘c’, ‘]’, ‘;’, 2 brackets and 6 spaces). Fixations on the individual tokens are detected using a probabilistic model (for details see Nüssli (2011)). We categorized the program tokens into 3 gaze tokens: **Expression**, **Structural** and **Identifier**. Each second of the interaction is categorized as one of the gaze tokens (based on the maximum probability).
Gaze Transitions
We aggregated three consecutive gaze tokens into the following three categories (see Sharma et al., (2012)):

Expression: if all the three gaze tokens are expressions.
Data Flow: if there is a permutation of expressions and identifiers.
Read: if there is a permutation of all the three gaze token categories.

![Figure 2. Setup used for the experiment. Upper half shows the laboratory setup for the experiment. The left bubble depicts the stimulus and the right bubble depicts the eye tracking setup.](image)

Dialogue Episodes
We divided the dialogues into 2 major categories according to the content of dialogues. The first category comprises the dialogues containing the description of program functionality; and the second category contains task management utterances, for example, when participants talk about how to proceed, as well as about the controls of interface or where they should look next. Accordingly, we named the two categories as “description” and “management” respectively.

Gaze Episodes
The gaze episodes are identified based on two parameters: the visual focus of gaze of the participants and the similarity of their gaze. In order to characterize the visual focus of one subject, we compute the object density vector over a given time window. This density vector contains the probability of looking at the different objects of the stimulus. In order to compute this vector, we aggregate gaze data over a 1-second time window and we compute for each object the amount of gaze time that was accumulated inside the object.

We then define the visual focus size as the numbers of objects that are looked at during a 1-second time frame. The rationale is to distinguish between moments where subjects look essentially at few objects versus moments where they look more or less uniformly at several objects. In order to get a quantitative indicator of this focus size, we compute the entropy of the density vector. Entropy measures the level of uncertainty of a random variable, which is, in our case, the objects looked at by the subjects. Hence, high entropy indicates that the subjects looked at many objects (not focused gaze), while low entropy indicates that they mostly looked at few objects (focused gaze).

For each 1-second timeframe, we define the visual focus coupling as the similarity between the objects looked by one subject and the objects looked by the second subject. We quantify this coupling by computing the cosine between the gaze density vector of one subject and the gaze density vector of the other subject.

Episodes are obtained by combining focus size and similarity. An episode lasts as long as the focus size and similarity stay constant. Technically, a run length encoding procedure applied on the 1-second indicators for visual focus and similarity obtains this. When both subjects are focused and similar we define “focused together” gaze episodes. Similarly, we define three other types of gaze episodes that are: “not focused together”, “focused not together” and “not focused not together”. Since we are mostly interested in “what happens during moments of high collaboration?” we report only what happens in “together” episodes (i.e., “focused together” and “not focused together”). Typically, a “focused together” episode translates in terms of behavior as putting joint efforts to understand code while a “not focused together” episode translates as an effort to search some piece of code.
Level of Understanding

We distinguish between two levels of understanding based on how well they performed the description task. Pairs with **high level of understanding** are able to describe the rules of the game along with initial situation, valid moves and winning conditions. Pairs with **low level of understanding** only describe partial aspects of the game structure, and often give algorithmic descriptions of the program and try to guess the detailed rules from the method names; but they failed to get the winning condition.

Results

Question 1: Understanding and Gaze Episodes

The first question concerns the relation between the level of understanding attained by the pair and proportion of time spent by the pair in different gaze episodes. Table 1 shows the ANOVA results for gaze episodes “focused together” and “not focused together” across the two levels of understanding. Pairs with high level of understanding spend more time in gaze episode “focused together” than the pairs with low level of understanding ($F_{[1,16]}=8.70, p=0.01$). Figure 3 shows the difference interval for the two types of gaze episodes across the levels of understanding.

Table 1: ANOVA results for different gaze episodes across two levels of understanding.

<table>
<thead>
<tr>
<th>Episode Type</th>
<th>Df1</th>
<th>Df2</th>
<th>Sum Sq.</th>
<th>F-value</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Focused Together</td>
<td>1</td>
<td>15</td>
<td>0.09</td>
<td>8.70</td>
<td>0.01</td>
</tr>
<tr>
<td>Not Focused Together</td>
<td>1</td>
<td>15</td>
<td>0.06</td>
<td>10.60</td>
<td>0.005</td>
</tr>
</tbody>
</table>

Question 2: Gaze Episodes and Dialogue Episodes

The second question addresses the relationship between the gaze episodes and the dialogue episodes. Table 4 shows the mixed effect model for the two types of dialogue episodes with the factors level of understanding and gaze episodes. There is no significant difference between the proportion of total time spent in dialogue episodes and the gaze episodes, but, there is a significant interaction effect of level of understanding and gaze episodes on the proportion of total time spent on the different dialogue episodes ($F_{[1,61]}=7.60, p=0.01$, Figure 4).

Table 2: Mixed effect model for dialogue episodes with factors level of understanding (UND) and gaze episodes (EPGAZE) (NS= Not Significant).

<table>
<thead>
<tr>
<th>Dialogue Episodes</th>
<th>Description Episodes</th>
<th>Management Episodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>Df</td>
<td>Sum Sq.</td>
</tr>
<tr>
<td>UND</td>
<td>1</td>
<td>0.05</td>
</tr>
<tr>
<td>EPGAZE</td>
<td>1</td>
<td>0.04</td>
</tr>
<tr>
<td>UND * EPGAZE</td>
<td>1</td>
<td>0.17</td>
</tr>
</tbody>
</table>
Figure 4. Interaction effect on DESC and MGMT dialogues in focused together and not focused together gaze episodes (0=focused together; 1=not focused together) for different levels of understanding (1=Low level of understanding; 2=High level of understanding).

The pairs with high level of understanding spend more time in “description” dialogue episodes when they are in a “focused together” gaze episode. On the other hand, pairs with low level of understanding spend more time on “management” dialogue episodes when they are in a “focused together” gaze episode. Figure 5 shows the dialogue snippets for pairs with different levels of understanding during different gaze episodes.

Question 3: Dialogue Episodes and Gaze Transitions

The third question considers the relation between the dialogue episodes and the gaze transitions. Table 3 shows the ANOVA results for different gaze transitions across different dialogue episodes. “Description” dialogue episodes have more gaze transitions as “expressions” than the “management” dialogue episodes. Moreover, “management” dialogue episodes have more gaze transitions as “read” than the “description” dialogue episodes. The differences are irrespective of the level of understanding or the type of gaze episodes. Figure 6 shows the difference intervals for the two gaze transition categories across the dialogue episodes.

<table>
<thead>
<tr>
<th>Transition Type</th>
<th>Df1</th>
<th>Df2</th>
<th>Sum Sq.</th>
<th>F-value</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expressions</td>
<td>1</td>
<td>63</td>
<td>0.51</td>
<td>8.79</td>
<td>0.004</td>
</tr>
<tr>
<td>Read</td>
<td>1</td>
<td>63</td>
<td>0.45</td>
<td>8.31</td>
<td>0.005</td>
</tr>
</tbody>
</table>

Figure 5. Dialogue snippets for pairs having different levels of understanding during different gaze episodes to show the differences between verbal communications among the participants in the pairs. (a) Low level of understanding and focused together. (b) Low level of understanding and not focused together. (c) High level of understanding and focused together. (d) High level of understanding and not focused together.

Discussion and Conclusion

We conducted the present study with a two-fold motivation. First, identifying gaze and dialogue indicators at different time scales in a pair program comprehension task. Second, bridging different levels of time scales to demonstrate the relationship between gaze and group cognition.
Concerning the methodological challenge, we have proposed gaze episodes as a description of the gaze of a pair on a task unit level. This measure is task independent and can be applied in a wide range of situations. For example, it could be used to describe the focus and similarity of gaze in a concept-mapping task, or in any text reading task. The level of detail for focus and similarity can be varied depending on the accuracy of the eye-tracker and depending on the task. With low-end eye-trackers, one could measure paragraph level, whereas with high-end machines, similarity can be measured at the word base.

Concerning the bridge between two consecutive time scales, we analyze each pair of time scales (see section “Present Study and Questions” and “Results”). We observed that the pairs with high level of understanding spend more time being “focused together” (see subsection “Understanding and Gaze Episodes”) and while they are “focused together” the participants in the pair explain the functionality of the program to each other (Figure 5 (c)). When the pairs with high level of understanding are “not focused together” they talk about their next steps in the task (e.g., they talk about where to look next, Figure 5 (d)). On the other hand, pairs with low level of understanding exhibit the opposite behavior as they spend more time being “not focused together” (see subsection “Understanding and Gaze Episodes”).

Moreover, while the pairs with low level of understanding are “not focused together” the participants explain to each other a small part of the functionality of program to maintain a shared focus. Based on our observations, we think that this reflects different ways to understand the program. The “focused” way consists of explaining in depth the functionality of the program, whereas the “unfocused” way consists of describing the code to the partner and to “travers” the code together.

Concerning the interaction effect of level of understanding and gaze episodes on the type of dialogues (see subsection “Gaze Episodes and Dialogue Episodes”). There is no direct relation between the gaze episodes and dialogue episodes. However, we see a direct relation between gaze indicators at the level of operations and dialogue episodes. Irrespective of the level of understanding, the pairs have a higher proportion of “expressions” gaze transitions within “description” episodes. Moreover, the pairs have a higher proportion of “read” gaze transitions within “management” episodes. A possible explanation to this observation is that within a “description” episode the participants are more concerned with “what the program does?” This piece of information is contained in expressions within the programming constructs and hence the participants spend their time on understanding the expressions. On the other hand, within a “management” episode participants are talking about where to go next of they are searching a particular piece of code hence the gaze of participants is as if they are scanning the code like English text.

In a nutshell, we showed that there is a relationship between gaze and dialogue indicators at different time scales. These relations help us understand the cognition that underlies program comprehension as well as the collaboration that underlies pair programming. The results are interesting enough to pursue further research in the same direction to find the causality between processes at different time scales.

References

Acknowledgment

The work reported in this paper is part of the projects Matching Gaze Patterns and Interaction Patterns in Collaborative Tasks (II) (CR121I_132996) and Multimodal Interaction Modeling and Regulation of Collaborative Problem-Solving (PZ00P2_126611), both funded by the Swiss National Science Foundation (SNSF).