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Abstract: Learning progressions are hypothetical models of student learning in a domain over 

extended periods of time. In many cases these progressions describe multiple ‘big ideas’ or 

constructs. Relationships between these constructs, i.e., how development along one might 

affect the other, are difficult to ascertain. Such relationships can be described from the 

perspectives of either item characteristics or student abilities. Existing methods of analyses 

focus predominantly on the ‘item-side’ of the equation and much less research addresses 

construct relationships from the ‘student-side’. In this study, we supplemented a 

Multidimensional Item Response Modeling approach with a Latent Class Analysis to more 

fully explore both within and between-construct relationships. We analyzed student written 

responses (n=317) to 31 ordered-multiple-choice items targeted at five constructs in a genetics 

learning progression. We present our finding with the goal of comparing and contrasting the 

types of inferences that can be made with both measurement approaches. 

Introduction 
Learning progressions (LPs) embody a developmental approach to learning by describing productive paths that 

students might take as they develop progressively more sophisticated ways of reasoning in a science domain 

over extended periods of time (Alonzo & Gotwals, 2012; Duncan & Hmelo-Silver, 2009a; NRC, 2007). Some 

LPs map out progress along only one core idea (e.g. Shavelson et al., 2005; Rivet & Kastens, 2012), this is 

termed a construct map (Wilson, 2005). Alternatively a LP can map out progress along several constructs 

simultaneously, thus the LP includes multiple construct maps (e.g. Duncan, Rogat & Yarden, 2009b; Jordan & 

Duncan, 2009; Plummer & Krajcik, 2010). A basic assumption of LPs is that within a construct map students’ 

progress from less sophisticated levels to more sophisticated levels. However, the progress is rarely neat and 

linear, and diagnosing the level at which a student is reasoning can be challenging. For example, several 

researchers (Gotwals & Songer, 2010; Steedle & Shavelson, 2009) have pointed to the problem of a ‘messy 

middle’, in which students at the middle levels are relatively inconsistent in their reasoning on items of the same 

relative difficulty. This suggests the likelihood of multiple non-linear paths that students may take to reach the 

upper level of a LP (Steedle & Shavelson, 2009).  

The relationship in progress along multiple construct maps is even more complex and can take many 

forms. Wilson (2009) offered several representations of how progress along multiple constructs may occur: (a) 

progress rates along multiple constructs may be very similar such that students progress from one level to the 

next along multiple constructs at the same time, i.e. the construct maps are aligned; (b) progress along one 

construct depends on first attaining some level of understanding along another different construct, i.e. the 

construct maps are staggered; or (c) two or more construct maps may ‘feed’ into another more sophisticated 

construct map, i.e. a combination of aligned and staggered maps.  

Many researchers (e.g. Brown, Nagashima, Fu, Timms, & Wilson, 2010; Hadenfeldt, Neumann, & Liu, 

2013; Anderson, Gotswals & Songer, 2010) have analyzed the relationships among the levels of performances 

within and between constructs using the multidimensional item response modeling (MIRM) approach (Adams, 

Wilson, & Wang, 1997; Wilson, 2013). This approach juxtaposes student abilities and individual item 

difficulties on the same logit scale. In the MIRM approach, inference about the validity of the proposed levels in 

a construct map depends mostly on how items behave given student abilities. On the ‘item-side’ one can 

calculate, for each level, the threshold point for which students have a 50% probability of achieving that level of 

understanding or higher (termed Thurstonian thresholds)  (Wu & Adams, 2007). These thresholds are useful for 

inferring relative difficulties of moving from one level to the next within a construct map (Wilson & Draney, 

2002). Thurstonian thresholds can also be used to infer about relative difficulties of specific levels across 

constructs. For example, the level one thresholds for items measuring construct X may be similar to, lower, or 

higher than the level one thresholds for items measuring construct Y.  

 On the other hand, inferences about the levels of LPs, in particular within constructs, are less informed 

by the ‘student-side’ results. The MIRMs provide student ability estimates that are normally distributed. For a 

five-construct test, each student gets five estimated abilities on each of the constructs and the distribution of 

these ability estimates for the five constructs may have different means and variances. Thus, within and between 

construct comparisons can be made, but only in a general distribution sense. That is, whether students can be 
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classified into the levels of LPs is a question that MIRM approach does not directly answer. The abilities of the 

students are modeled and estimated to be on a continuous scale, it therefore becomes problematic to later 

classify students onto discrete levels of performances on LPs. This is because MIRM is based on assumption 

that the students are in a homogeneous group that shares a particular performance pattern on sets of assessment 

items; the approach assumes that all students at a particular level reason in the same, consistent, manner. 

Consequently, it becomes difficult to identify and understand the characteristics of the ‘messy middle’ classes of 

students. We explore whether the relationships among the levels of LP within and between constructs can be 

more fully explained when we supplement and bolster the MIRM approach with the missing component: 

providing student-side information that matches the discrete nature of the LP levels, and enables within and 

between construct comparisons of level dynamics in LP. 

 We use latent class analysis (LCA; Lazarsfeld & Henry, 1968) to provide the student-side information 

for our analysis of the genetic learning progression (Duncan et al., 2009b). LCA examines if the cases (e.g., 

students) can be placed into multiple latent groups or classes based on their response patterns. Application of 

LCA is not new in LP research; Steedle and Shavelson (2009) employed LCA to evaluate whether there are 

groups of students who perform as expected by an LP for force and motion (Alonzo & Steedle, 2009). Their 

results suggested that students at the lower and upper levels of the progression reasoned relatively systematically 

across items, however students at the middle levels often did not reason consistently and were difficult to 

diagnose as reasoning at a particular level. Similarly to Steedle and Shavelson we use LCA to examine whether 

the assumptions of our LP match the patterns of the identified classes from data. Moreover, we are particularly 

interested in the dual use of LCA and MIRM to provide a more complete student and item-side perspectives on 

the expected performance within and across the five constructs of the genetics LP. Our research questions are 

thus: (a) what inferences can one draw from the MIRM analysis about the relationships between levels within a 

construct and between levels across constructs? (b) What inferences can one draw from the LCA analysis about 

the relationships between levels within a construct and between levels across constructs? (c) In what ways are 

findings from these approaches congruent, conflicted, or enhanced by each other?  

Genetics Learning Progression and Assessment Design 
The genetics learning progression is organized around two core questions in the domain: (a) how do genes 

influence how we, and other organisms, look and function? And (b) why do we vary in how we, and other 

organisms, look and function? There are eight big ideas associated with these questions. In our current work we 

are focusing on five of them: (1) Construct A: all living things have genetic information that is organized 

hierarchically; (2) Construct B: the genetic information specifies proteins structure; (3) Construct C: Proteins 

have a central role in the biological function of living things and are the mechanism that connects genes and 

traits; (4) Construct E: Organisms reproduce by transferring their genetic information to the next generation; and 

(5) Construct F: There are patterns of correlation between genes and traits, and there are certain probabilities  

with which these patterns occur.  Each construct is mapped out across four levels of growing sophistication. 

Progress along the progression entails developing more sophisticated understandings of these constructs as well 

how they relate to each other. A detailed description of the progression can be found in Duncan et al. (2009b).  

The genetics LP, as originally described, did not provide any conjectures about how development along 

one or more constructs might affect development along others, as the research base was insufficient to inform 

such assertions. In recent work we discussed some tentative dependencies between two of the constructs (B and 

C) and showed that understandings of these constructs develops mostly independently and in parallel (Shea & 

Duncan, 2013). In this study we attempt to explore such relationships from multiple perspectives, using a larger 

sample, and with more powerful measurement models. Towards this end we developed a written assessment 

comprised of 31 ordered-multiple-choice (OMC) items corresponding to the five constructs and their four levels 

of understanding. In OMC items different response options are linked to levels of conceptual understanding 

(Briggs, Alonzo, Schwab & Wilson, 2006; Briggs & Alonzo, 2012); items are scored using partial credit models 

and thus provide more information about students’ level of reasoning than traditional multiple-choice items.  

Methods 

Data and Instrument 
The 31 OMC written assessment was administered, over a two-week period, by six participating teachers in 17 

biology classrooms (n=317) at a suburban high school in eastern United States. The school consisted of 47% 

African American, 22% White, 19% Hispanic, and 11% Asian students; 34% of the students were eligible for 

free or reduced lunch. Among the 17 classrooms, 7 classrooms were higher-performing classrooms or ‘honors’ 

(n=164), and 10 classrooms were regular-level classrooms or ‘labs’ (n=153). Prior to data collection, the six 

participating teachers implemented the district’s eight-week genetics unit covering typical high school level 

genetics concepts in classical and molecular genetics.  
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As described above the 31 OMC items were designed to gauge students’ understanding of five 

constructs in the genetics LP. Most of our items included response options that mapped onto 2-4 levels of a 

particular construct. Overall, at least 3 items, and most often 5 items, measured each level in each construct. 

Assessments were administered in two comparable forms with the same set of items differently ordered on each 

form. Across all constructs, the response options mapped onto Levels 0 through 3 of the genetics LP, as well as 

Level ‘-’ which refers to distractors unrelated to any specific level on the LP. Table 1 shows the actual 

distribution of the items across constructs and levels, for items that had valid level-scored data. For example, 

although in the assessment we had more than 3 items that were designed to measure Level 3 for construct B, 

from students’ actual responses we had Level 3 answers for only one item among the three construct B items.  

 

Table 1. Actual number of items across constructs and levels of the genetics LP 

 

 Level – (irrelevant) Level 0 Level 1 Level 2 Level 3 

Construct A 1 2 7 4 3 

Construct B 1 5 4 4 1 

Construct C 4 8 10 8 6 

Construct E 0 0 5 4 3 

Construct F 3 4 12 10 7 

Analysis 
We performed MIRM and LCA analyses separately and consecutively to answer the research questions. The 

primary goal of the MIRM was to estimate the difficulties of individual items and the abilities of students on the 

same scale. We took a confirmatory approach that assumes ordered response categories and correlations 

between constructs. The model also assumes that each of the items measures one of the five constructs in 

genetics LP. Within each construct, the responses to items are independent and have a Bernoulli distribution. 

We used multidimensional random coefficient multinomial logit (MRCML) model (Adams, Wilson, & 

Wang, 1997) for polytomous data to estimate model parameters. Three types of results are provided by MIRM 

analyses. First, on the ‘item-side’, we estimate the difficulties of individual items. In particular, we calculated 

Thurstonian thresholds for each level of each item. Note that the number of thresholds is one minus the number 

of levels that the item is measuring. Next, on the ‘student-side’, for each individual student we estimated the 

abilities on five correlated constructs. Also, the correlations and covariances among the constructs are estimated. 

Finally, we calculated other relevant statistics such as deviance, EAP reliability, separation reliability, etc. 

MIRM analysis was performed using ACER ConQuest IRT software (Wu, Adams, Wilson & Haldane, 2007). 

ConQuest uses conditional maximum likelihood algorithm to estimate model parameters. The EM algorithm 

was terminated at the convergence criteria of 0.01 after 16 iterations.  

The primary goal of the LCA was to examine whether the students can be placed into multiple latent 

groups or classes. Note that in using the latent class models we take an exploratory approach that does not 

assume ordered classes. That is, the resulting classes do not necessarily match the order of levels of the 

constructs. However, because the response categories were scored following the ordered levels of each 

construct, we can take a confirmatory perspective in examining if the response patterns reveal higher or lower 

level performances in some classes. i.e. do the classes differ in ability. We used latent class models (Lazarsfeld 

& Henry, 1968) for polytomous data to determine classes of students. The varying number of classes was 

incorporated in the model assumptions, which can be tested by comparing posterior fit statistics. The model 

assumes that within each class, the items are independent and have a Bernoulli distribution. Given the 

distributional assumptions of the items, we can express the likelihood of any set of occurrences.  

Three types of results are provided by latent class analysis. First, we estimated the probability 𝜋𝑖𝑐𝑘 that 

the response for each item, answered by students from each of the specified number of classes, is equal to a 

certain response category. Next, we estimated the posterior probability that each of the students falls into each 

class. For each student, the sum of these probabilities across classes equals one. Finally, we estimate the 

posterior probability that each student belongs to each class. Latent class analysis for polytomous outcome 

variables was performed using poLCA (Linzer & Lewis, 2011), a software package implemented in the R 

statistical computing environment. poLCA uses the EM algorithm to estimate model parameters. The known 

problem of the EM algorithm is that a local maximum of the log-likelihood function can be found depending on 

the initial values. To avoid local maxima problems, we ran poLCA 100 times for each model to ensure the 

results are based on the model with the global maximum likelihood. We selected the results that occurred more 

than 65 times out of 100 runs. Since one statistic is never a perfect measure of model fit, we looked at three 

statistics to assess the model fits of the global solution. The first- Log likelihood is a function of the observed 

responses for each student and the model parameters. The second- AIC is a measure of goodness of fit of a 

model that considers the number of model parameters; and the third- BIC is a measure that considers not only 
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the number of model parameters but also the sample size. Preferred models are those that minimize values of the 

BIC and/or AIC. We also looked at Pearson’s chi-squared (X
2
) goodness of fit and likelihood ratio chi-squared 

(G
2
) statistics for the observed versus predicted cell counts. Larger values of  X

2
 and G

2 
 indicate that the 

particular model fits the data better.  

Results 
 

Examining LP Level Dynamics Within and Between Constructs using MIRM Results 
As noted earlier we began with the MIRM ‘item-side’ analyses to obtain item difficulty estimates and 

Thurstonian thresholds for item level scores. In Figure 1, the Wright Map depicts the core advantage of MIRM 

approach- inference about student performance, item difficulties, and levels of LPs can all be made on the same 

logit scale. On the left five panels, the estimated distributions of student abilities for the five constructs are 

shown as bell curves. On the right five panels, the estimated thresholds of each level score of each item is shown 

with colored dots: level 1 thresholds with red, level 2 with green, and level 3 with blue. The gray columns 

indicate items, and colored horizontal lines indicate average thresholds for levels within constructs. 

 

 
Figure 1. The Wright Map for genetics learning progression. 

 

There are several interesting inferences that can be made from this Wright map. First, there are 

differences in the level thresholds across constructs. The lowest level 1 threshold across all constructs was for 

construct A. This lower threshold value on the logit scale implies that it was easier for students to show 

understanding at level 1 or above on construct A, compared to other constructs. Second, some constructs are 

overall easier than others. For example, construct E has the lowest threshold for both levels 2 and 3, and appears 

to be the easiest construct; whereas construct B appears to be the most difficult to master. Third, there are 

differences in the spread of level thresholds across constructs. For example, constructs A and B have a larger 

spread compared to C and F, suggesting that there is a larger difference between the understandings at each level 

of construct B. The demarcation between levels is greater for construct B compared to most of the others. 

Comparing level threshold spreads within a construct suggests that some ‘jumps’ from one level to the next are 

harder than others. In construct A, the difference between level 1 and levels 2-3 was the greatest. Thus while 

attaining a level 1 understanding on construct A is relatively easy, moving up to a level 2 understanding is much 

harder compared to similar moves for the other construct.   

  In reviewing the other side of the Wright map, the ‘student-side’ results of MIRM afford less inference 

about the levels of learning progression within or across constructs. While we can compare estimated student 

ability distribution between constructs, these are not particularly nuanced. We can see, for example, that 

students performed more similarly to each other on construct C (tighter curve) than on other constructs. 

However, we cannot compare the location of the distributions between constructs because the mean of the five 

distributions were all fixed to zero in order to allow the mean of the item difficulties to vary in the MIRM 

estimation. Thus, the ‘between’ construct comparison relates to the overall pattern, and is not about relationships 

between the levels across constructs. Unless standard setting and accompanying student level diagnosis are 

performed ad hoc (Wilson & Draney, 2002), there seem to be fewer inferences to make about level dynamics 

using student results from the MIRM analyses. We next present our findings from the LCA approach regarding 

the relationships of levels within and across constructs. 
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Examining LP Level Dynamics Within and Between Constructs using LCA Results 

LCA allows one to identify classes of students who reason similarly across the entire assessment or individual 

constructs. To identify how many different classes of students exist, we fit multiple models, from two to five 

classes. Our results suggest that for constructs A, B, C and E, the model with two classes fitted slightly better 

than models with more classes. For construct F, the three-class model fitted better than two- or four or five -

class models. Given that most constructs have four levels, finding the best fit in a 2-class model was unexpected. 

One potential explanation is that the honors and lab students function as two distinct classes that overshadow 

other more subtle distinctions. We subsequently decided to take the four-class solutions for all constructs and 

look at the characteristics of the classes in detail.  

In the four-class model we estimated the conditional probability that a student in a class responds to an 

item with a certain response category (i.e. at a particular level). For each student and each item, the probabilities 

of responding to all categories are assumed to sum to one. Figure 2 summarizes these conditional probabilities. 

In the left graph of Figure 2, we show the results from the four-class solution with construct A items. Each of 

the four panels on the graph represents a predicted class. Note that class number does not necessarily match the 

order of the levels in LP (i.e. class 1 is not necessarily students reasoning at a level 1 on this construct). On the 

X axis we have five A items, and on the Y axis, we have the conditional probability of getting a certain level 

score for an item. Each bar represents an item and each color represents a level score for the item. The height of 

each segment in the bar represents the likelihood of students in that class obtaining a particular level score for 

the specific item. Ideally, we expect to see is that classes are different in terms of the proportion of different 

colors they have (i.e., there is one dominant level for each class across the items); then one can argue that the 

classes reflect the characteristics of the ordered levels in LP. Here, the figure shows that Level 3 (purple) 

responses are dominant for class 1, Level 2 (blue) is dominant for class 3, Level 1 (green) is dominant for class 

4 and Level 0 (red) is dominant for class 2. Based on actual summation of the probabilities, the most dominant 

level in class 1 is Level 3, for class 2 it is Level 0, for class 3 it is Level 2 and for class 4 it is Level 1. This is a 

relatively ‘clean’ match between levels and classes. Predicted class memberships, estimated by the modal 

posterior probability, show that 26.5% of students belong to class 1, 16.1% belong to class 2, 11.7% to class 3, 

and 45.7% of the students belong to class 4.  

In comparison with the cleaner LCA analysis for construct A, the right graph of Figure 2 presents the 

4-class analysis for construct F, which seems to be the messiest among the five constructs. Visually, Level 3 

(purple) is dominant for class 2, Level 2 (blue) is dominant for class 2,3, Level 1 (green) is dominant for class 4, 

Level 0 (red) is dominant for class 1,3,4, and the unrelated Level ‘-’ (orange) is dominant for class 1. Level ‘-’ 

represents item response options that were simply distractors and did not map onto any specific level on the LP.  

The summation of probabilities reveals that most dominant level for class 1 is Level 2, for class 2 is also Level 

2, for class 3 is again Level 2, and for class 4 is Level 1. Predicted class memberships show that 43.5% of 

students belong to class 1, 48.0% belong to class 2, 5.1% to class 3, and 3.5% of the students belong to class 4.  

	  

Figure 2. Estimated conditional probability of constructs A and F level scores by four latent classes. 

 

Table 2 shows the classification of the student abilities across all five constructs, given the four-class 

solutions. Across the five constructs, how student abilities are classified into the four levels of the LP was 

clearly different. The best classification result was observed for construct A: each of the four classes in 

construct A matched well, also proportionally, with each of the four levels of the construct (shown by the 
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dominant level and its proportion among all answers.) A majority of students were in class 2 (43.0%), of which 

student responses to the construct A items were mostly at level 2 (39.4%). However, the classification results 

did not match well with the four levels for all other constructs. For construct B, the four classes were 

characterized by only two levels of the construct: level 1 and 2. A majority of students were classified into class 

3 and class 4 (48.9% + 28.4% = 77.3%), of which student responses to the construct B items were mostly at 

level 2 (44.9% and 54.9%). For constructs C, the four classes of students were characterized only by two 

dominant levels: levels 1 (class 4, 7.8%) and 2 (all three other classes, 92.2%). For construct E, the four classes 

were characterized by levels 1 and 3, with the majority of students at level 3 (64.4% + 21.7% = 86.1%). For 

constructs F, the four classes were also characterized only by levels 1 (class 4, 34.6%) and 2 (all three other 

classes, 65.4%).  

 

Table 2. Classification of the students across all five constructs 

 

Construct Class 

Predicted 

Class 

Membership 

Dominant 

Level 

Proportion of  

Dominant Level Answers, 

Across Items 

1 0.160 Level 3 0.651 

2 0.430 Level 2 0.394 

4 0.217 Level 1 0.337 
A 

3 0.193 Level 0 0.392 

3 0.489 Level 2 0.449 

4 0.284 Level 2 0.549 

1 0.157 Level 1 0.628 
B 

2 0.070 Level 1 0.383 

1 0.312 Level 2 0.404 

2 0.525 Level 2 0.354 

3 0.085 Level 2 0.205 
C 

4 0.078 Level 1 0.258 

2 0.644 Level 3 0.747 

3 0.217 Level 3 0.450 

1 0.095 Level 1 0.601 
E 

4 0.044 Level 1 0.750 

1 0.111 Level 2 0.377 

2 0.236 Level 2 0.453 

3 0.308 Level 2 0.476 
F 

4 0.346 Level 1 0.352 

 

Overall, LCA, like MIRM, affords making some interesting inferences. First, as noted earlier, the best 

fitting model is a two-class model rather than a four-class model, suggesting that the proposed levels of the 

progression may not map neatly, or at all, onto students’ actual performance. Second, when using a four-class 

model we find that some constructs are much messier than others. By this we mean that the classes in some 

constructs map poorly onto levels (construct F) compared with classes in other constructs (construct A). Often 

there are clearer class-level association for the highest and lowest performing classes (cleaner mapping onto the 

least and most sophisticated levels of the construct map) and a much messier middle, a phenomenon that has 

been previously documented  (Gotwals & Songer, 2010; Steedle & Shavelson, 2009). Students in this messy 

middle tend to reason inconsistently, performing well on some items and less well on others. Third, in some 

cases one can make comparisons between classes across different constructs. For example, our analysis suggests 

that the students who are classified in class 3 on construct A are mostly classified in class 1 on construct B (not 

shown).  Both these classes (class 3 in construct A and class 1 on construct B) reason at a level 3 on both 

constructs respectively. However, making such comparisons between constructs A and F is problematic due to 

the rather fuzzy distinctions between classes on construct F. Thus the messier the constructs the more difficult it 

is to compare them and make inferences about cross-construct relationships. 

 
Discussion 
Overall, our results suggest that, not surprisingly, the MIRM and LCA analyses together provide more detailed 

and nuanced information than each alone. We have shown that MIRM provides useful information about how 

the levels of the items within constructs and across constructs are perceived by students. That is, which items are 

easy and which are hard, which constructs are overall easier and which are harder. However, MIRM does not 

ICLS 2014 Proceedings 612 © ISLS



provide much useful information about how certain groups of students within our sample behaved differently, 

within and across constructs in attaining different levels on the items and consequently constructs. The student 

ability estimates are provided with an assumption of a continuous scale, not with distinct classes, groups, or 

levels. We can later classify the students onto levels of LPs, but it depends on ‘item-side’ threshold results that 

do not account for difference among student groups. Consequently, MIRM may not be sufficient in 

understanding the problem of interest: the relationships among the levels of LPs within and between constructs. 

Our findings suggest that LCA is useful in providing additional, ‘student-side’, information about the ‘messy 

middle’ levels or classes in certain constructs of LPs. However, LCA is less amenable to ranking students’ 

performances or to assess correlation between the performances on multiple constructs. This is because ranking 

and correlations require continuous data, yet LCA allows classification of students onto a few distinct levels of 

performances. 

The benefit of using multiple measurement models and approaches to studying LPs has been noted by 

other researchers (Briggs & Alonzo, 2012) and there are several different approaches that have been used 

besides the more frequently-used MIRM (e.g., attribute hierarchy method (AHM; Briggs, Alonzo, Schwab, & 

Wilson, 2006), Bayesian networks (West et al., 2010). In this research, we chose to bolster the popular use of 

MIRM in LP research with the use of LCA in order to more fully explain the relationships among the levels of 

LP within and between constructs. This was possible because LCA provided student-side information that 

matches the discrete nature of the LP levels. While LCA, AHM, and Bayesian networks can classify students 

into discrete classes, LCA is a less diagnostic but simpler approach. With the cost of more detailed diagnostic 

information, LCA does not require a-priori specification of a matrix that formally associates items and 

attributes, as in AHM, nor a multitude of conditional probability tables, as in Bayesian networks, Navigating 

between multiple methodological frameworks for empirical validation of LPs is already a problem for 

researchers when resources do not allow clear guidance in the pool of methodologies. While a more formal, 

comprehensive comparison of methods should follow to further inform researchers, this study contributes to the 

ongoing scholarship on LPs by providing some reasons and guidance for choosing between the MIRM and LCA 

approaches given a specific research goal. By doing so, this study motivates further discussions about what 

types of evidence each of these methodologies provides, or not , in relation to different research questions. 

The work also highlights some important implications regarding the genetics progression and learning 

genetics more specifically.  For example, there are certain ideas that are easier for students to master than 

others. In this case we found that reasoning about the hierarchical organization of the genetic information 

(connection between DNA, chromosome, genes, nucleotides) and the universal nature of the genetic information 

(all organisms have genetic information that is used by their cells in essentially the same way) was an idea 

(construct A) that was relatively easy for students to master. However, understanding what the information is 

about and the cell uses the information, was the hardest idea (construct B). This may be a reflection of the 

common instructional focus on structure and process (structure of DNA, processes of transcription and 

translation) rather than on the big idea that genes are instructions for proteins and that proteins are the physical 

mechanism that generates our traits (Duncan & Reiser, 2007). On the other hand, understanding that parents 

give half the genetic information to their offspring was an easier idea for students to master and the movement 

up the levels of this construct (E) involved much smaller conceptual jumps .  

There are also interesting differences in the spread of levels of understanding for different constructs.  

For example, construct C (role of proteins) shows much less variation in understanding across students. Most 

students are at a level 2. In comparison constructs A and B show greater variation. We believe this reflects 

differences in the nature of the constructs and the extent to which students have substantive prior knowledge 

about those ideas. It seems that students may develop understandings of construct C as a result of instruction 

(recall the data shows were collected after genetics was taught) and thus have fairly similar “party line” 

understandings of proteins. However, their understandings of the nature of the genetic information (construct B) 

are likely informed more extensively by prior knowledge from various sources and students may exhibit such 

understandings on the assessment resulting in a larger spread of student ability for that construct.  

In terms of using our analyses can be used to revise the progression the picture is rather fuzzy. The 

relatively small sample of the study and the fact that the instruction was not based on the expectations of the 

progression makes drawing clear-cut conclusions difficult. The point about instruction is rather critical. If we 

assume that students will progress along a hypothetical progression when they experience instruction that 

supports such progression (i.e. instruction that capitalizes on the developmental constraints and affordances 

embodied in the progression), then the nature of the instruction experienced becomes a critical part of the 

equations. If instruction is not designed based on the progression it is not clear whether the expectation for 

anticipated student progress should  hold.  
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