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Abstract: In a previous study (N=84), we collected information about dyads who worked on 
an engineering task typical of makerspaces: programming a robot to solve mazes of increasing 
difficulty. We collected multimodal data using a variety of sensors, including mobile eye-
trackers, galvanic skin response, motion sensors and audio / video streams. In this paper, we 
contrast two pairs that exhibited positive and negative learning gains. We first detail 
multimodal measures to compare differences and similarities across those groups, and then 
dive deeper into a qualitative analysis of their exchanges. We then describe how those 
measures could be used over the entire sample to capture productive interactions in small 
groups. We conclude by discussing how process data from sensors can augment traditional 
qualitative observations, and how it can create powerful synergies for better understanding 
collaborative interactions among learners in settings such as makerspaces.  

Introduction 
Supporting STEM learning (Science, Technology, Engineering, Mathematics) has become a primary focus of 
the Learning Sciences over the past decade. There is also a growing interest to understand how we can teach 
21st century skills within those domains (e.g., Collaboration, Communication, Critical thinking, Creativity). The 
combination of those factors has contributed to the popularity of makerspaces. Makerspaces are informal 
learning environments where students learn complex concepts in STEM by building their own artifacts using 
digital fabrication tools (e.g., laser cutters, 3D printers, robotics). We are interested in understanding what 
promotes learning in those spaces - especially from a socio-constructivist perspective (Palincsar, 1998). We 
presuppose that social interactions are among the main drivers of learning, because students spend a significant 
amount of time interacting with their peers and facilitators. This paper is about conducting a multimodal 
analysis of a typical makerspace activity, and isolating factors that contribute to productive collaborations. More 
specifically, we isolated two pairs from a larger study (Starr, Reilly & Schneider, 2018) and are qualitatively 
analyzing their interactions. The main contribution of this paper is that we are leveraging methods from the field 
of Multi-Modal Learning Analytics (MMLA; Blikstein & Worsley, 2016) to support our qualitative 
observations and helps us generate measures of productive interactions in small groups. 
 The paper is structured as follows: first, we conduct a literature review of indicators of collaboration 
from a multimodal perspective (physical, physiological and visual synchronization). Second, we summarize the 
study and present the two pairs that we are contrasting. Third, we analyze those two groups using a variety of 
qualitative and quantitative methods. We leverage sensor data to augment our two case studies using data from 
eye-trackers, a motion sensor and wristbands capturing electrodermal activity. Fourth, based on those analyses 
we present measures of synchrony that we plan to extend to our entire sample of 42 pairs. We conclude by 
summarizing our results and discussing next steps. 

Literature review 
As a first step and for the scope of this paper, we are focusing on measures of synchronization in small groups. 
We review three kinds of synchronization that could characterize productive interactions: physical, visual and 
physiological. Because of space limitations, we only discuss the main contributions of each domain. 

Physical synchronization 
The synchrony of physical movements within groups using multimodal learning analytics is an emerging aspect 
of research on collaboration. Behavioral coordination between group members is generally indicative of positive 
outcomes and has been studied extensively (Pentland & Heibeck, 2008.) This type of qualitative analysis, 
however, is time-consuming and requires expert knowledge of gestures to code correctly. Using sensor data and 
computational methods, Worsley and Blikstein (2013) have pioneered new ways to study embodied learning 
and found that experts in a construction task are more likely to use both hands in a synchronized fashion and 
that this bimanual coordination predicted expertise. Similarly, studies have shown that learning gains can be 
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predicted by the amount of time students spend in certain postures (Schneider & Blikstein, 2015) and that the 
most productive posture involves both hands being synchronously engaged in the activity. This work was 
extended to look at dyad interactions, with the “driver” consistently using both hands more frequently while the 
“passenger” asynchronously moved their hands. Other MMLA work has shown that body posture during 
computer-supported activities can be predictive of learning (Grafsgaard et al., 2014) and theory suggests that 
increased body synchronization is associated with higher quality collaboration (Chartrand & Bargh, 1999). In 
summary, there is some emerging evidence that physical synchronization can be indicative of productive social 
interactions. 

Visual synchronization 
Eye-trackers have been used to study joint attention in collaborative learning situations. Richardson et al. (2007) 
showed that building upon a mutual source of understanding --”mutual grounding”-- (i.e., hearing the same 
background information before the task) positively influenced the visual attention coordination in spontaneous 
discussions. More related to this particular study, Jermann et al. (2001) used synchronized eye-trackers to assess 
the degree of collaboration as programmers worked together on a segment of code. By a comparison of a ‘good’ 
and a ‘bad’ dyad, the study suggested that high joint visual recurrence is strongly related with collaboration. 
Nüssli (2009) showed that models of group behavior can be built with a combination of eye-tracking and other 
data: the combination of gaze and raw speech data (voice pitch and speed) afforded predictions of participants’ 
success with an accuracy rate of up to 91 %. Lastly, Brennan et al. (2008) conducted a spatial search task and 
studied the effect of shared gaze and speech during the experiments; they concluded that the shared gaze 
condition surpassed solitary search by twofold in terms of speed and efficiency and was the most optimal of all 
the conditions. Consolidating the results from the above studies, we can see that joint attention and in turn 
synchronization between individuals are crucial for high-quality collaborations. The results suggest eye-tracking 
as a salient method for understanding factors that contribute to effective collaborations.  

Physiological synchronization 
Recently, researchers have started to study collaborative groups using electrodermal sensors. Electrodermal 
activity (EDA; also referred to as galvanic skin response, GSR) measures the amount of sweat produced by the 
sympathetic nervous system and is an indication of physiological arousal. By using synchronized EDA sensors, 
one can measure whether group members are aroused at the same time, or exhibit some levels of 
desynchronization. Early work by Pijeira-Díaz, Drachsler, Järvelä and Kirschner (2016) looked at different 
measures of physiological coupling indices (PCIs), and found that Directional Agreement (DA) predicted 
learning gains while Instantaneous Derivative Matching (IDM) was related to the quality of the produced 
artifact. In summary, there is some preliminary evidence that physiological synchronization can capture a facet 
of productive collaborations.  

Summary 
In sum, educational researchers are starting to use various kinds of sensors to capture facets of a productive 
collaboration. There is data suggesting that physical, visual and physiological synchrony can be used a proxy to 
collaboration quality. In the next section, we describe our study where we measured those states using a Kinect 
sensor, two mobile eye-trackers and two wristbands capturing participants’ electrodermal activity.  

General description of the study 
42 pairs of participants (N=84) programmed a robot to navigate a series of increasingly complex mazes (see (for 
more details on the study, see Starr, Reilly & Schneider, 2018). Participants were shown two tutorial videos to 
acquaint them with the basics of block-based programming and how to use the values from sensors on the robot 
in their code. Groups were told to come up with a general solution that could solve any simple maze and then 
had 30 minutes to complete as many of the mazes as possible. Two different interventions were implemented to 
support collaboration in a two-by-two between-subjects design resulting in four different conditions (presence / 
absence of): 1) a visualization of the amount of individual verbal contributions as a proportion of total 
verbalization (Fig. 1, top left corner of the right picture; referred to as VISUALIZATION henceforth); 2) a short 
verbal explanation of the benefits of collaboration for learning (referred to as EXPLANATION henceforth). 
Outcomes of interest included the quality of the code groups produced (evaluated on a zero to four scale to 
determine how well the code in abstract could perform the maze solving task), the number of mazes solved, 
gains on a learning test administered before and after the sessions, and the quality of their collaboration. 
Multimodal data was collected via two mobile eye-trackers, two bracelets tracking electrodermal activity, a 
motion sensor, and video recording (Fig. 1). 
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Figure 1. A frame from the video used for the qualitative analyses of this paper. The two top images show the 
perspective of the participants (captured by the mobile eye-trackers) and the location of their gazes (red circle). 

The bottom left view shows the main video feed of the session, and the bottom right view displays a screen 
capture of the laptop. In this frame, group 8 was programming the robot to navigate an S-shaped maze. 

Data analysis: Contrasting group 7 and 8 
The goal of this paper is to analyze two dyads in more depth and design measures that will allow us to contrast 
good versus poor collaborative styles across the entire sample. We chose to focus on groups 7 and 8 because of 
the stark differences in their behaviors. Group 8 (EXPLANATION, VISUALIZATION) was among the top 
groups in our sample: participants had a productive collaboration where group members built on each other’s 
ideas and exhibited positive learning gains. The participants in group 7 (EXPLANATION, NO 
VISUALIZATION), on the other hand, exhibited lower scores on all our metrics, resulting in periods of silence 
and miscommunications as well as negative learning gains. 

Traditional quantitative measures 
Group 7 was comprised of a 50-year old male (7L) and a 26-year-old female (7R). Both self-reported “Some 
College” for level of educational attainment and 7R indicated she was currently a student. 7L scored 8.3 
percentage points worse on the post-test for computational thinking skills, indicating some confusion about the 
concepts required for the task. 7R gained 20.9 percentage points between pre and post, suggesting a much better 
grasp of the material after completing the activity. Participants in group 7 were able to direct the robot 
successfully through one maze but their final code failed to nest conditional statements and did not use the pre-
written functions correctly (Fig. 2, left side). In a written reflection section on the post test, 7L had the following 
to say about his time with the activity: “…I have no talent for programming. I did not have any breakthrough 
moments. I would not do this type of study again. My ideas did not change over time and I felt that I did not 
learn much about computers.” 
  Group 8 was comprised of a 25-year old female (8L) and a 35-year-old female (8R). Both reported 
completing college and identified as no longer being students. 8L scored 16.7 percentage points higher on the 
post test of computational knowledge, indicating a modest improvement. 8R scored no better on the posttest 
compared to the pre, although she did make different errors. This suggests a level of confusion related to certain 
topics in computational thinking. They were also only able to complete the simplest maze but their code made 
use of nested conditional statements and correctly employed the prewritten functions they were given (Fig. 2 - 
right side). In a written reflection section on the post test, 8L had the following to say about his time with the 
activity: “We tried playing around with the different sensors. We started trying sensors 1 and 2, but then 
realized that using sensor 4 was necessary to complete the task.  That was our "a-ha" moment. We tried 
changing the order of the if/else/do functions to get different results that helped advance our knowledge of the 
task.” 
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Figure 2. Final code produced by Group 7 (left) and Group 8 (right). 

  
These two groups were selected due to their similarities of having one more knowledgeable participant, 

both completing the same number of mazes, and both having complete multimodal data to analyze. Exploring 
the difference in amount of collaboration observed and how that relates to the quality of the written code is a 
main goal of this work as well as identifying multimodal markers to signal quality of collaboration. 

Qualitative data 
Before delving into the overlay between qualitative data, eye-tracking data, and physiological data, we will 
overview the key themes seen between Groups 7 and 8’s qualitative data. To obtain this data, subjects’ 
experiments were recorded on video and an iterative process was used to note the various data points for 
qualitative data.  

Group 7 engaged much less with each other than Group 8. There was little rapport built between the 
Group 7 members, whereas Group 8 laughed as early as the initial calibration color-reading exercise and 
continued throughout the experiment (17 times for Group 8 versus once for Group 7), especially after trials and 
during coding discussions. The length of dialogue in Group 7 was noticeably shorter than that of Group 8, and 
the content exchanged within Group 7 was not as detailed as Group 8. Even when Group 7 discussed more 
detailed code, it was a leader-follower response with the subject on the right saying most of the language and 
the subject on the left saying “mhmm” or “ok” and followed by heavy sighing. This type of dialogue impacted 
Group 7 negatively as the team was not able to understand the task at hand and dialogue came to a pause 
frequently through the experiment.  

By contrast, Group 8 was almost the exact opposite of Group 7. Building on each other’s rapport 
minutes into the experiment, the two subjects were able to speak specifically about each section of the code. 
Each subject switched between making suggestions and verifying the assertions. The pair spoke at equal lengths 
throughout the experience, and often asked each other questions directly related to the task at hand. Unlike 
Group 7, which consistently displayed confusion via repeating statements like “I don’t know,” Group 8 
displayed encouraging enthusiasm with short exclamations to relieve stress even as it recognized rising task 
difficulty throughout the experiment. For instance, about halfway through task 3, right subject suggested adding 
code to tell the robot to reverse direction, which is responded by an enthused left subject, “right!” In another 
instance, the robot did not make an intended turn, but turned in an opposite direction. The dyad exclaimed in 
surprise, but the right subject said, “well we got it to turn left, so that’s promising!” Lastly, Group 8 had many 
instances of “mhmm,” “ok,” and “does that make sense” language that were spoken by the dyad with friendly 
tone, versus the resigned tone of Group 7 for the same words. It is worthy to note that Group 7 did not have an 
equal split of reciprocal filler words, as the left subject were the one who said most of such language.  

Group 8 also visibly and often celebrated for their successes, which did not happen for Group 7. Forms 
of celebration was most commonly displayed via loud exclamations like “whoo!”, high-fives, laughing and 
clapping. These observable signs provide grounds to believe that reinforcing signals of goodwill such as 
frequent check-ins and friendly body language and enthusiastic tones build rapport that help the team sustain 
collaboration as the task difficulty increases. Another key difference that set Group 8 apart is the frequency of 
the iterations. Building upon the alternating role of suggesting and verifying, the dyad was willing to make 
adjustments to the code, test it, and come back to the coding platform to improve the code if the trial failed. 
Combined with frequent acknowledgement of each other--including looking at each other--the dyad was able to 
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repeat the iterations numerous times, become increasingly familiar with the interface and be more hands-on than 
Group 7.  

Eye-tracking data 
Our first pass at analyzing visual synchronization involved applying the taxonomy developed by Kaplan and 
Hafner (2006), where they define joint visual attention as: simultaneous looking triggered by a salient event, 
simultaneous looking triggered by a “pop-out” effect, coincidental simultaneous looking, gaze following, or 
coordinated gaze on same object (Table 1). We stayed largely consistent with the five-category approach from 
Kaplan and Hafner (2006)’s hierarchy for generating our eye-tracking data. We decided to use this hierarchy 
because it was pertinent for gauging joint attention between the two agents--the partners in our study--and in 
turn the synchronization between the dyad. We used the ELAN software to track the eye-tracking data through 
annotating the occurrence and duration of the various categories of eye-tracking data as relevant data points 
appear in the experiment videos (Fig. 3). In the future, we will use automated ways of capturing joint visual 
attention using the fiducial markers tapped at various locations in the room.  
 
Table 1: Categories used in the eye-tracking data 
 
Category Hierarchy Shorthand Example Group 7 Group 8 

Simultaneous looking 
triggered by a salient 
event 

1 - Simultaneous 
looking_Salient 

Agent 1 points finger at the screen, Agent 2 looks at the 
screen 19 52 

Simultaneous looking 
triggered by a “pop-
out” effect 

2 - Simultaneous 
looking_PopOut 

Agent 1 looks at a different color of code block because its 
color stands out 1 0 

Coincidental 
simultaneous looking 

3 - Simultaneous 
looking_Coincidental 

Agents 1 and 2 both looks for the robot, sees the robot at the 
same time but has no interaction with one another 7 13 

Gaze following 4 - Gaze Following Agent 1's gaze follows that of Agent 2 44 59 

Coordinated gaze on 
same object 

5 - Coordinated 
Gaze_SameObj 

Both agents look at the same object knowing the other agent 
is looking at it as well 62 142 

 

 
 

Figure 3. Screenshot of eye-tracking data for group 8 as seen in ELAN annotations, on the bottom half of the 
screen by category (i.e., second column of Table 1). Lengths of the annotated simultaneous gazes can be seen. 

 
Overall, there were more coordinated gaze on the same object than other categories, followed by gaze 

following and then salient event. This is consistent with expectation for the study, as the dyad conducted most 
of its interactions via sedentary coding. The salient events were mainly caused by one subject pointing at the 
screen or the guide sheet provided. Gaze following usually occurred after salient events and before coordinated 
gazes. When gaze following overlaps with another category in sequence, the total combined gaze duration is 
shorter for the salient event than for the coordinated gaze. 

For both dyads, most coordinated gazes longer than 10 seconds happened during task 3 (69% for 
Group 7 and 75% for Group 8), indicating the relative scale of attention required to complete a more difficult 
task. The salient event gazes did not last long for either group due to the nature of the gaze. What was different 
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was that Group 8 had a mostly even distribution of salient event gazes through the different task periods, while 
Group 7’s salient events were fewer and more clumped than of Group 8 (19 for Group 7 versus 32 for Group 8). 
Given that most of the salient events occurred because of finger pointing to attract attention of the subject’s 
partner, this suggests that Group 8 may have had more interactions with one another.  

Additionally, eye-tracking results indicate further differentiation of Group 8 from Group 7. Group 8 
had the longest joint eye gazing, and more often overall than Group 7 (142 coordinated gazes for Group 8 
versus Group 7’s 62). Coordinated gaze on the same object composed of 53% of Group 8’s total eye-tracking 
data, and of that category 55% of the gaze durations surpassed 10 seconds long, compared to Group 7’s 11%. 
Finally, Group 8 had more overall eye-tracking appearances, with 266 tracked points to Group 7’s 133. 

Comparing the relative frequency of appearance of each category across groups, Group 8 dominated 
across each category except gaze following. Group 7 had a great proportion of its eye-tracking events as gaze 
following when compared against Group 8. This suggests that simple gaze following may not contribute to the 
effectiveness of team collaboration--more active feedback (as measured by various types of eye movements and 
other data) had to be exchanged between the partners to create more meaningful interaction.  

The above data suggests that Group 7 is not as synchronized as Group 8, with fewer coordinated gazes, 
fewer overall gazes, and shorter gazes than Group 8. In a task like pair programming, coordinated gazes are 
increasingly important as tasks become more complex. The drastic difference between Group 7 and Group 8 
lead us to seek further validation in qualitative data to see if further patterns can be seen.  

Physiological data 
Tying the themes described above to EDA spikes, Group 7’s physiological arousals did not sync across the dyad 
and generally the state of physical arousal decreased throughout the experiment for one subject while for the 
other subject the EDA levels remained about the same (Fig. 4, left side). The spike in the EDA of the subject 
towards the right-hand side of the screen observed when the subjects sat and watched an instructional video. 40 
seconds after the start of the activity, the left-hand subject had an EDA spike as he looked at the moderator 
when she was providing the pair directions. Neither of these events were related with the tasks at hand. The only 
relevant arousal happened 10 minutes after the beginning of the activity, when the right subject entered into an 
agreement period in which she was narrating the logic of the code to the left subject. The pair also looked at 
each other for the first time. Despite this, it’s clear that the left subject did not match the EDA state as right. 
 

 
 

Figure 4. EDA graph, normalized, for group 7 (left side) and group 8 (right side). Indices of synchronization can 
be computed using measures described by Pijeira-Díaz, Drachsler, Järvelä, & Kirschner (2016). 

 
Group 8’s physiological data showed that the dyad had a higher level of synchrony (Fig. 4, right side). 

In particular, about five minutes after the 5th tagging procedure, the dyad ran their robot through the first maze 
(task 2), and upon the robot’s success the right subject celebrated with a “whoo” and raised arms. This was 
picked up by the EDA as the intersection of the EDA measures of left and right subjects. The pair continued 
onwards through the remainder of the experiment in active EDA syncing, showing at least three visible 
intersection points starting from 20 minutes after the 5th tagging procedure, per Figure 4. The overlaps 
increased in frequency towards the end of the session, further supporting earlier eye-tracking and qualitative 
data showing the quality collaboration within the dyad. During this period, there were numerous iterations of 
coding and running the robot, often ending in laughter. The spikes in EDAs are mainly explained by these as 
well as the frequent standing by the dyad for their repeated robot retrials.  

Preliminary quantitative analyses 
In this section, we describe a first attempt at capturing physical and physiological synchrony between group 7 
and group 8. Our strategy was to synchronize the data between group members and produce a scatter plot, 
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where values on the x-axis are shown for the first participant and values on the y-axis are shown for the second 
participant. We can then roughly subdivide a graph into four quadrants: the bottom left represents when both 
participants were exhibiting low levels of physiological activation or movement; the top right shows when they 
were both aroused or moving. The last two quadrants (top left or bottom right) indicate some levels of 
desynchronization: one group member has high values while the other participant has low values. Figure 5 
shows that group 7 exhibits a pattern that is L-shaped as well as negative correlations (Fig. 5, left side), while 
group 8 tends to have points that are more evenly distributed - which is captured by positive correlations. We 
are planning to apply those measures to our entire sample to confirm those results.  
 

 Group 7 Group 8 

EDA 

 
r = -0.047, p < 0.05 

 
r = 0.077, p < 0.05 

Kinect 

r = -0.046, p < 0.05 
 

r = 0.179, p < 0.05 
 

Figure 5. Group 7 is on the left side, group 8 is on the right side. First row shows synchronized EDA data (the 
first participant is on the x-axis; the second participant is on the y-axis). Second row shows the amount of 

movement generated by each participant on each axis. 

Discussion 
In this paper, we contrasted two groups sampled from a larger study (N=84) using qualitative and quantitative 
methods. Qualitative analyses suggested that group 7 had more issues working together and accomplishing the 
task, while group 8 was more successfully and enjoyed the task more. The more collaborative dyad had much 
more detailed language and frequent, specific interactions, but also developed rapport through body language, 
mutual gazing, and frequent acknowledgement of each other. Combined with the use of keywords and tones that 
signaled positive intention, the more collaborative dyad was able to weather the stresses of completing difficult 
task and maintain task engagement as one unit. Physiological and eye-tracking data further validated our 
observational data, providing the multimodal view of team collaboration. Eye-tracking data showed that 
frequent simultaneous gazes and longer gaze length were characteristic of the more collaborative group, which 
eventually accomplished the tasks given. This provides support that eye-tracking data can provide a good gauge 
for high-quality group collaboration (as previously shown by Jermann, Mullins, Nuessli, & Dillenbourg, 2001). 
Gaze-following is also important in indicating reciprocity of the dyad in collaborative spaces. However, simple 
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gaze following is insufficient in contributing to collaboration. Additionally, electrodermal data confirmed those 
observations by showing elevated activation from the more successful group and helped us identify events of 
interest (e.g., by analyzing “spikes” in the data). Finally, those qualitative analyses helped us design measures of 
synchrony in small collaborative groups: we found that bodily and physiological synchronization should be 
further studied by extending the results found in Fig. 5 to the entire sample and confirming whether it can be 
used as a proxy for identifying successful groups.  

Conclusion 
In this paper, we have presented a new way of studying collaborative learning groups by using a combination of 
qualitative observations and data from high-frequency sensors. Our preliminary analyses suggest that Multi-
Modal Learning Analytics (Blikstein & Worsley, 2016) can help us shed new lights in collaborative learning 
processes, especially in open-ended learning environments such as makerspaces. In the future, we are planning 
to further explore differences between groups in our study and develop multimodal proxies of collaborative 
interactions using high-frequency sensors. Those proxies could then be used by teachers and practitioners in 
informal learning environments to support the development of 21st century skills, especially in terms of 
students’ ability to work effectively in small groups.  
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