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Abstract: The purpose of this manuscript is to describe a style of learning analytics research 
that makes closer contact with the qualitative methods of the learning sciences. We do so by 
drawing on two examples of existing research. The first is our prior work attempting to 
automate part of the Classroom Video Analysis assessment, which seeks to measure 
knowledge of teachers that is predictive of their performance. The second is from work which 
looks at how middle school students explain the Earth’s seasons. In that work, we attempted 
to use unsupervised methods to capture elements of what was previously a fully qualitative 
analysis. Our goal is to provide the reader with a sense for this style of research that brings 
qualitative analysis and analytic methods into closer contact. To accomplish this, we make use 
of a new system called Tactic, designed specifically to support this mode of research. 

Introduction 
The purpose of this manuscript is to argue for a style of learning analytics research that makes closer contact 
with the qualitative methods of the learning sciences. As a set of innovations in educational research, learning 
analytics is not only about the application of new analytic algorithms to data. These new algorithms are also 
applied to new types of data, such as computer log files and biometric data. They are also applied to data that is 
larger in scope. Furthermore, the types of questions being answered are often somewhat different (Baker & 
Yacef, 2009; Martin & Sherin, 2013).  

However, it is possible to apply some techniques from learning analytics to more traditional qualitative 
data, and with aims and methods that hew more closely to established methods. Why would we want to do this? 
There are a number of obvious reasons. First, if we apply traditional and learning analytic methods to similar 
corpora and with similar aims as existing studies, we have the potential to produce distinct but complementary 
analyses. A second benefit is the potential for reducing the labor associated with traditional types of analysis, 
especially in qualitative research. Even when a data corpus is small, from the point of view of learning analytics, 
manual analysis can be slow and laborious.  

But, more exciting than these somewhat obvious benefits is the possibility of bringing established and 
learning analytic methods together in a manner that augments both. If we work with smaller data corpora about 
which human analysts have detailed, intimate knowledge, there is the potential to support the design of more 
finely tuned computational analyses, and to better interpret the results of those analyses. Computational analysis 
can in turn provide new perspectives on qualitative data analysis, even helping to surface tacit knowledge of 
human coders. Finally, tightly integrated traditional and computational analyses have the potential to provide a 
kind of triangulation that increases our understanding of—and confidence in—both. 

Our purpose in this paper is to illustrate these points. We do so by drawing on two examples of existing 
research. The first is our prior work attempting to automate part of the Classroom Video Analysis assessment, 
an assessment that seeks to measure knowledge of teachers that is predictive of their performance (Kersting, 
2008; Kersting, Givvin, Thompson, Santagata, & Stigler, 2012; Kersting, Givvin, Sotelo, & Stigler, 2010). In 
that analysis, we used data coded by human raters to train classifiers using a modified Naïve Bayes approach 
(Kersting, Sherin, & Stigler, 2014). The second is from work which looks at how middle school students 
understand the Earth’s seasons (Sherin, Krakowski, & Lee, 2012). In that work, we used unsupervised methods 
to capture elements of what was previously a fully qualitative analysis (Sherin, 2013). Both of these lines of 
work followed a similar trajectory; in each case, we revisited prior research, applying learning analytic methods 
to existing data.  

Tactic: Infrastructure for learning analytics research 
We begin with a brief discussion of the infrastructure available for this new style of learning analytics research. 
Learning analytics requires, of course, software tools that can perform the relevant computational analyses. One 
approach that analysts can take is to write their own code, usually in a way that is specific to the analysis at 
hand. Even in this case, however, analysts draw on publically available software libraries. In addition, there do 
exist GUI tools that reduce—but generally don’t eliminate—the programming required. These include Weka 
(Hall et al., 2009), RapidMiner (Hall et al., 2009), and LightSide (Mayfield & Rosé, 2013).  
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In this paper, we will display analyses as they look in a new web-based environment text mining 
environment called Tactic, that we are currently developing. Tactic is specifically tuned for working in an 
interactive mode in which the analyst moves back and forth between the data and analytics. The data is always 
front and center, and Tactic incorporates visual features that assist the user in seeing relationships between the 
original data and analytics applied to that data. In addition, Tactic does not impose a particular decomposition of 
the analytic process on users. So, for example, we do not assume that a user’s analysis will be separated into a 
pre-processing step, followed by a modeling step. We believe instead that the interactive style of research 
should allow for a more emergent workflow, which might be somewhat specific to each project.  

Figure 1 shows an analysis workspace, in process, with two tiles visible on the right. (This will be 
further explained below.) Tiles do most of the computational work, and Tactic includes a base set of tiles which 
users modify or use unchanged. Users can also create entirely new tiles. All programming is done in Python, 
within the web environment. There is nothing in Tactic that represents a radical advancement beyond existing 
tools. What is important is that it is tuned for a particular style of work, which we now explain in more detail. 

First example: The CVA assessment 

Original CVA research 
The second author of this manuscript and her colleagues developed the Classroom Video Analysis (CVA) 
assessment as a means of assessing the usable knowledge of mathematics teachers (Kersting, 2008; Kersting et 
al., 2012; Kersting et al., 2010). Here, by “usable” knowledge, we mean the knowledge that teachers can access 
and apply in the classroom. In the CVA, teachers watch a series of videos of classroom instruction. After each 
video, they are asked to “analyze how the teacher and student(s) interacted around the mathematical content.” 
They type their comments into a web-based form, and these responses are then scored by trained coders. For 
example, in response to a video clip showing part of a lesson on fractions, a teacher responded: ‘‘The teacher is 
asking the student questions to narrow down his search to find equivalent fractions. I don’t know if the boy 
understood the meaning of the giant 1. It was almost like the student was guessing, and judging how the teacher 
responded he would know if he was right or wrong.’’ 

The CVA has been the focus of an extended program of traditional (non-computational) research. That 
work has found that the CVA can predict instructional quality, as measured by direct observations of teaching. 
Strikingly, one dimension measured by the CVA, teachers’ ability to make suggestions for improving the 
teaching episode, has been found to predict the learning of students in the classrooms of teachers studied. 

Prior computational methods 
The CVA is potentially a powerful means of assessing teachers. However, its wider use has been somewhat 
hindered by the fact that it is laborious for coders to score teachers’ written responses to the video clips and 
requires coders to undergo extensive training. For this reason, automating some part of the CVA analysis could 
have substantial benefits. In addition, the power and success of the CVA merits additional study. Learning 
analytic methods have the potential to not only replicate the work of manual coders; they might also help us to 
better understand why and how coders assign the codes that they do. 

In prior computational work on the CVA (Kersting, Sherin, & Stigler, 2014), we made use of CVA 
assessments targeting three mathematical content areas: (1) fractions, (2) ratios and proportions, and (3) 
variables, expressions, and equations. For the fractions data, 238 teachers responded to 13 clips. For the ratio 
and proportion data, 238 teachers responded to 13 clips. Finally, for the variables, expressions, and equations 
data, 249 teachers responded to 14 clips.  

All of this data was manually scored according to four rubrics: mathematical content (MC), student 
thinking (ST), suggestions for improvement (SI), and depth of interpretation (DI). Each response was given a 
code of 0, 1, or 2 for each of these four rubrics, with 2 being the best score, and 0 being the worst. For example, 
for the MC rubric (on which we will focus) a response was given a score of 0 if it didn’t mention mathematical 
content. In contrast, it was given a score of 2 if there was an in-depth analysis of the content, which went 
beyond the mathematics described in the clip. A more superficial discussion of the mathematical content 
received a score of 1. For instance, the teacher response cited above was given a score of 1 because it mentions 
the mathematical content but doesn’t go beyond the mathematics described in the clip.  

In our computational analysis, we trained a unique Naïve Bayes classifier for each of the 40 clips. In 
essence, each classifier is a software model, that can take a teacher response as an input, and output the most 
likely code. The model is initially “trained,” by feeding in sample responses that have been coded by human 
analysts. In the case of the Naïve Bayes classifiers we constructed, this training is essentially done by gathering 
statistics; the algorithm looks at how frequently specific individual words are associated, in the human-coded 
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data, with a specific code. Furthermore, to train our classifiers, we did not include all of the words that appear in 
responses. We first discarded all words that appeared on a “stop list” of common words. We then kept only the 
100 most frequent words that remained. After training, the Naïve Bayes algorithm combines these statistics to 
code new responses. More expert readers will recognize that, from the point of view of machine learning, the 
Naïve Bayes algorithm we have selected is relatively simple, and likely not optimal. The simple nature of our 
selected method was driven, in part, by our desire to produce classifiers with internals that could be easily 
inspected and understood, as we illustrate below. 

In our computational work, one fundamental question was whether we could ultimately hope to replace 
human coders with automated scoring, as a means of predicting teacher quality. If this is our goal, it means that 
we should not be primarily interested in replicating individual codes on specific clips. Rather, we are interested 
in the ability of the automated coding to predict teacher effectiveness. This leads us to be most interested in (1) 
the composite scores, across all clips, for a given subject-matter area, and (2) the correlations between these 
composite scores and the composite scores given by human coders. 

 
Table 1: Average quadratic weighted kappa and correlations for the CVA analysis 
 

Topic Kappa Spearman Correlation 
Fractions .51 .89 
Ratio .51 .86 
VEE .55 .91 

 
Table 1 shows the average results for this analysis, in which the composite scores are averaged across 

multiple runs. As shown in the table, overall average correlations were high. The correlations for three of the 
four sub-scores – MC, ST, and DI – were similarly high, ranging from .77 to .91. For SI, the correlations were 
somewhat lower, ranging from .49 to .69. (The correlations for sub-scores are not shown in the table.) 

We also computed quadratic weighted kappa values to provide a measure of agreement, beyond 
chance, between human and automated scoring. The results shown in Table 1 report the Kappa values for each 
of the subject matter areas, averaged across clips. These values represent moderate agreement. As with the 
correlation results, there was variation across the four rubrics. Results for MC and DI ranged from .56 to .64. In 
contrast, results for SI and ST ranged from .36 to .43 and .43 to.47 respectively.  

Interactive analysis with tactic 
The results summarized above suggest that applications of computational methods to the CVA data can achieve 
one of the benefits mentioned earlier; namely it seems to have the possibility of reducing the labor required by 
human analysts. We next want to show what the benefits might be for a more interactive style of analysis.  

Figure 1 shows an analysis of the CVA fractions corpus, as it might appear in Tactic, at an intermediate 
stage. The data table is on the left. It has the text of each response. In addition, the column labeled CODEMC 
has the codes given by the human raters – 0, 1, or 2 – for the MC rubric. (Here, for simplicity, we will focus just 
on that rubric.) The popup list above the table allows the user to select other documents in the corpus, which 
here correspond each of the 13 fractions clips. 

Analysis tiles are added using the menus at the top of the display. Once a tile has been added to the 
environment, the user clicks on the gear icon at the top-left of the tile to configure options on the back of the 
tile. Here three analysis tiles have been added to the work environment. The first, very basic, example, is the tile 
labeled WordFreqDist. When this tile is configured and run, it displays a table of the corpus frequency and 
document frequency for the most frequent words. The tile also provides a simple type of interactivity; namely, 
clicking on a word highlights matching words in the main data table. In addition, other tiles can access python 
data structures that are exported by a tile. In this case, there is a tile showing a plot of the document frequencies 
exported by the WordFreqDist tile. 

The third tile allows us to illustrate some more interesting possibilities. This tile is set up to run a very 
simple Naïve Bayes analysis—a much more rudimentary analysis than was used in (Kersting, Sherin, & Stigler, 
2014). Here we are training one classifier to work across all 13 of the fractions clips. In addition, (for the 
purposes of keeping things simple) we are committing what is usually an egregious error; we are training and 
testing on the entirety of the data.  

When run, this tile trains a classifier using all of the fractions data. It then codes each response, and 
writes those codes into a new column, here labeled MC_AUTO. In addition, a confusion matrix is displayed on 
the front of the tile. Again, this provides some simple interactivity: clicking in a cell of the confusion matrix 
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shows a new table of responses that correspond to that cell. (This isn’t shown in the figure.) Those responses 
can, in turn, be clicked to be viewed in context in the main data table.  

 

Figure 1. Analysis of the CVA fractions corpus in process. 
 

 
Figure 2. Text coloring for the sample response. 

 
However, a more interesting type of interactivity is possible, if we provide the qualitative data analyst 

with a window into the automated analysis. The Naïve Bayes tile shown in Figure 1 has three buttons, one 
corresponding to each of the three codes: 0, 1, and 2. Clicking on one of these buttons causes the text in the 
main table to be highlighted with varying colors, with the colors selected according to the conditional 
probability of the highlighted word, given the code corresponding to the clicked button. The color palette used 
goes from red to yellow to green. So, for example, dark green indicates a high probability of the word for the 
given code, and dark red a low probability.  

Figure 1 shows the coloring obtained when the button corresponding to a score of 2 is pressed. Again, 
this is the highest code, and a score of 2 represents a deep analysis of mathematical content. Thus, when colored 
in this way, we are seeing which words the coders associate with a desirable response on this dimension. Figure 
2 shows how the response we quoted earlier is colored. The word “fractions” is dark green, indicating a high 
probability. This is not surprising, given that the coders are looking at whether the teachers are attending to the 
mathematical content. In contrast, the words “right” and “wrong” are less indicative of a deep analysis. This is 
also perhaps not surprising – coders might well believe that saying that an answer is right or wrong implies a 
focus on superficial aspects of the mathematical content. 
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Second example: Seasons analysis 

Original seasons research 
In this second example, we apply computational methods as part of what was originally a program of pure 
qualitative research (Sherin, Krakowski, & Lee, 2012). The work draws on interviews in which middle-school 
students were asked a range of questions about the Earth, its climate, and space science. More specifically, it 
draws on a portion of these interviews in which the students were asked to explain the Earth’s seasons.  

The interviews were conducted in the manner of a clinical interview, which meant that the interviewer 
had the freedom to ask follow-up questions for clarification, and to further probe the student. The seasons 
portion of the interview began with the interviewer asking, “Why is it warmer in the summer and colder in the 
winter.” The interviewer then asked various follow-up questions. This included asking the student to draw a 
picture. Interviewers were also prepared with challenges to be introduced based on the initial explanations 
provided by students. 

The explanations given by students were quite varied. However, in describing the spread of 
explanations, we have found it helpful to have in mind three prototype explanations. The first prototype we call 
close-farther explanations. In a closer-farther explanation, the whole Earth moves so that it is sometimes closer 
to the sun and sometimes farther away. When it is closer to the sun, the whole Earth experiences summer. When 
it is farther, the whole Earth experiences winter. 

The second type we call side-based explanations. In a side-based explanation, the Earth moves in such 
a manner that one side, at times, faces toward the sun, while the other side faces away. (Usually—though not 
always—this is caused by the rotation of the Earth on its axis.) The side facing toward the sun experiences 
summer, and the side facing away experiences winter.  

The final type of explanation is tilt-based. In these explanations, the Earth somehow moves so that one 
hemisphere is tilted toward the sun and the other away, with the side tilted toward the sun experiencing summer. 
This category includes, but is not limited to, the scientifically-accepted answer. In the accepted answer, the 
seasons are intimately linked to the Earth’s tilt. The Earth’s axis always points in the same direction. But, 
because the it orbits around the sun, first one hemisphere, then the other, will be inclined toward the sun. 
Furthermore, the hemisphere of the Earth tilted toward the sun receives more direct sunlight, and this more 
direct sunlight causes warmer conditions. 

In the original work on this corpus, our argument was not that students each give one from amongst a 
small set of explanations. Rather we argued that students generally construct explanations out of a number of 
small components, which we called nodes, leading to a larger number of explanation structures that mix and 
match these components. We called these explanation structures dynamic mental constructs, or DMCs. 
Furthermore, we presented evidence, in the form of examples, that these DMCs could shift rapidly, over the 
course of an interview.  

 

 
Figure 3. Edgar’s seasons diagram. 

 
For illustration, we present a portion of the text of the interview with one student, who we refer to as 

Edgar. In his initial explanation, Edgar drew the diagram shown in Figure 3, as he said: 
 
E: Here’s the Earth slanted. Here’s the axis. Here’s the North Pole, here's the south pole, and 

here’s our country. And the sun’s right here [draws circle on the left], and the rays are hitting 
directly right here, so things are getting hotter in the summer and when this thing turns, the 
country will be here and the sun can’t reach as much. It’s not as hot as the winter.  

 
In our prior work, we argued that Edgar’s first explanation, given in the passage above, is a variant 

side-based explanation; the Earth spins, and the side facing the sun is warmer because it receives more direct 
sunlight. As the interview proceeded, Edgar seemed to recall that the Earth orbits the sun, in addition to rotating 
on its axes. This led him to transition to a fairly traditional closer-farther explanation. 
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E:  Actually, I don’t think this moves [indicates Earth on drawing] it turns and it moves like that 
[gestures with a pencil to show an orbiting and spinning Earth] and it turns and that thing 
like is um further away once it orbit around the s- Earth- I mean the sun. 

I:  It’s further away? 
E:  Yeah, and somehow like that going further off and I think sun rays wouldn’t reach. 

 

These brief excerpts illustrate, first, how a student explanation could shift, from one moment to the 
next, over the course of an interview. Edgar began with a side-based explanation, and shifted to a fundamentally 
different explanation, a closer-farther explanation. We can also get some sense for how explanations can be seen 
as built out of components, that are mixed and matched. For example, as part of his initial side-based 
explanation, Edgar makes use of the notion that more direct light causes parts of the Earth to be warmer, a 
component that we would more typically associate with a tilt-based explanation. However, here he has 
incorporated this idea as part of a side-based explanation. 

Prior computational methods 
The issues here are quite different than those encountered in the CVA research described above. In that case, 
there was a well-defined coding scheme, but that scheme was laborious to execute. Here, in contrast, the initial 
publications did not use a coding scheme at all; instead, they used examples from the corpus to illustrate and 
support theoretical claims. This meant that, in important ways, readers had to trust our interpretive ability – our 
ability to “see” the components and DMCs in the idea.  

We believed that, if an automated analysis could replicate at least some aspects of our analysis, that 
would place the whole endeavor on more solid ground. Furthermore, we felt it was necessary to set the bar high. 
We did not want to specify, in advance, the components or DMCs that our automated analysis would use. The 
discovery of these elements is where the important, and controversial work, lies. Thus, we wanted to have the 
automated analysis discover, on its own, both the components and DMCs. 

Going in, there were many reasons to think that the data might not be amenable to much in the way of a 
computational analysis. As we will see, the size of the data corpus is quite small. In addition, the interviews can 
be rambling and unclear. Furthermore, as in the interview with Edgar, there was a lot of gesturing, and 
references to drawings, important communicative elements that weren’t included in our computational analysis. 
These challenges are severe. But they are the sort of challenges that we will frequently need to overcome if we 
are going to use learning analytics in tandem with traditional qualitative data analysis. 

Our computational analysis is presented in its most extended form in (Sherin, 2013). The data we used 
were the transcripts of interviews with 54 middle school students. As a first step in the analysis, all comments 
by the interviewer were removed, and utterances by the student in each interview were concatenated. The 
interviews were then broken into overlapping 100-word segments, using a moving window that moved forward 
in 25-word increments. So, the first segment had words 1-100, the next segment words 25-125, etc. This 
segmenting process resulted in a total of 794 segments, across all 54 of the interviews. 

Words in a stop list of 782 words were removed from each of the segments. When this was done, the 
segments contained words from a vocabulary 647 unique words. Each of the 794 segments were then converted 
to word vectors, using a weight function of 1 + log(tf), where tf was the number of times the word appeared in 
the segment. What this means is that each segment of text was converted to a list of 647 numbers, where each 
number corresponded to one word in the vocabulary of 647 words. Finally, we performed one non-standard 
form of preprocessing. Namely, we computed what we have called deviation vectors. All of the 794 vectors 
were added, and the result normalized, to construct a sort of super-average. Then this average vector was 
subtracted from each of the 794 segment vectors. As explained in more detail in Sherin (2013), this was 
necessary for the next stage of the analysis to produce meaningful results. The result of the above process was 
that each segment of text was mapped to a point in a 647-dimensional space. As a final step, these points were 
clustered into 7 groups, using hierarchical agglomerative clustering. These clusters were interpreted as aligning 
with the knowledge components in our qualitative analysis. Ultimately, we argued that the analysis could in fact 
reproduce important aspects of the qualitative analysis, thus providing a new type of support for the original 
theoretical claims. We attempt to briefly illustrate this below. 

Analysis in tactic 
Figure 4 shows a Tactic workspace in which we have replicated some elements of the analysis reported in 
Sherin (2013). The top right tile in the workspace replicates the entire clustering analysis, described above. 
When this analysis is complete, the face of the tile displays a set of 7 tables, one for each of the clusters. These 
can be scrolled through (but only part of the first table is visible in the figure).  To make the results more visible 
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here, these were sent to the Log area at the bottom of the workspace. These tables show the highest weighted 
words in each cluster. 
 

 
Figure 4. Sample Tactic work environment for the seasons analysis.  

 
The clusters are, we feel, relatively easy to align with the terms of our theoretical analysis. First, 

Cluster 2 has closer, farther, and away, as its top words. This suggests that the corresponding knowledge 
component could play a role in any explanation that focuses on the proximity of all or part of the Earth to the 
sun (i.e., a closer-farther explanation). There are also clusters we would most expect to see in side-based 
explanations; Cluster 7 has side as its highest-weighted word and rotates second. Cluster 3 talks about the 
spinning of the Earth. In addition, Cluster 1 is about the moon, day, and night. (Discussion of day and night 
often showed up with side-based explanation.) Finally, Clusters 4, 5, and 6 correspond to components we would 
typically associate with tilt-based explanations. Cluster 6 has tilted, toward, and tilt as its highest weighted 
terms, and Cluster 4 seems to be about the Earth’s hemispheres. Lastly, Cluster 5 appears to focus on the 
directness of light striking the Earth.  

One of the core elements of our original work was the analysis of the dynamics of interviews. To 
capture this with our computational analysis, we performed a secondary analysis in which the clusters were 
applied back to each of the original transcript. The heatmap in Figure 4 shows the result when this analysis is 
performed for the full text of the interview with Edgar. To create this heatmap, the text of the interview was 
prepared and segmented just as for the clustering analysis, and a vector computed for each segment. The result, 
for the interview with Edgar, was 10 vectors. We then found the dot product of each of these vectors, with the 
centroids of each of the 7 clusters. In the heatmap, the time of the interview proceeds from left to right, and each 
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row of the heatmap corresponds to one of the 7 clusters. Darker shades represent a higher dot product between 
the section and cluster centroid. Thus, for example, the plot tells us that, the vector for segment 1 has its highest 
dot product with the directly-heat cluster, and segment 7 has the highest dot product with the closer-farther 
cluster. More generally, the plot does seem to broadly align with the qualitative analysis of the interview with 
Edgar. Recall that Edgar initially gave a side-based explanation, in which the side of the Earth facing the sun is 
warmer because it receives more direct sunlight. We see that, in fact, the segments in the first part of the 
interview do seem to align strongly with the directly-heat and side-rotate clusters. The first segment also seems 
to align with the tilted-towards cluster. This is because Edgar initially mentions the axis and poles. We also saw 
that, in the latter part of the interview, Edgar shifted to giving a closer-farther explanation. This is also captured 
in the heatmap. Thus, we can see that the automated analysis has captured at least some features of the dynamic 
account produced by the fully qualitative analysis, in our original work with this corpus. 

Conclusion 
Grounded theory, discovery-focused qualitative methods, and arduous qualitative coding have shown 
remarkable value for educational research over the last 50-100 years; but, so far, few environments or methods 
have leveraged learning analytics and machine learn to focus primarily on these analyses.  

Our argument is that by using learning analytics as a tool for existing qualitative analyses, bringing the 
two fields closer together, could result in many new exciting qualitative findings, much as learning analytics has 
done in more traditionally quantitative fields. Furthermore—perhaps paradoxically—there are reasons to believe 
that qualitative methods and learning analytics can work particularly well together. A significant chunk of 
qualitative analysis has focused on listening to the data – building theory and hypotheses from data rather than 
prefiguring hypotheses before collecting those data. A similarly large portion of learning analytics concerns 
mining for patterns in data that are not immediately human-perceptible. By enabling these strands of learning 
analytics and qualitative learning sciences to mesh, and building tools that afford and support that mesh, we 
open up the potential for radical new understandings for and between the fields. 

Finally, we suggested that this new meshed practice is more likely to be successful if it is supported by 
tools that are specifically tuned for this style of work. In that spirit, we presented the Tactic text mining 
environment as a tool that was designed with these aims in mind.  
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